
Ashok B. Mehta

ASIC/SoC
Functional
Design
Veri� cation
A Comprehensive Guide to Technologies
and Methodologies

ASIC/SoC Functional Design Verification

Ashok B. Mehta

ASIC/SoC Functional
Design Verification
A Comprehensive Guide to Technologies
and Methodologies

ISBN 978-3-319-59417-0     ISBN 978-3-319-59418-7  (eBook)
DOI 10.1007/978-3-319-59418-7

Library of Congress Control Number: 2017941514

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Ashok B. Mehta
Los Gatos, California
USA

v

To
My dear wife Ashraf Zahedi
and
My dear parents Rukshmani
and Babubhai Mehta

ix

Preface

Having been a design and verification engineer of CPUs and SoCs for over 20 years,
I’ve come to realize that the design verification field is very exhaustive in its breadth
and depth. Knowing only SystemVerilog and UVM may not suffice. Sure, you need
to know UVM (Universal Verification Methodology) but also SVA (SystemVerilog
Assertions), SFC (SystemVerilog Functional Coverage), CRV (constrained random
verification), CDC (clock domain crossing) verification, interconnect NoC (Network
on Chip) verification, AMS (analog/mixed signal) verification, low-power verifica-
tion (UPF), hardware acceleration and emulation, hardware/software co-verification,
and static formal (aka static functional aka formal property check) verification tech-
nologies and methodologies.

I noticed that there isn’t a book that gives a good overview (high level but with
sufficient detail) of the technologies and methodologies at hand. Engineers rely on
white papers, blogs, and EDA vendor literature to get some understanding of many
of these topics. That was the impetus for this book. I have covered all the aforemen-
tioned topics in this book.

The book is written such that the reader gets a good comprehensive overview of
a given topic but also enough detail to get a good grasp on the topic. The book has
a comprehensive bibliography that points to further reading material that the reader
can pursue.

The book is meant for managers, decision makers, as well as engineers: manag-
ers who want a quick introduction to the technologies and methodologies and engi-
neers who want sufficient detail with applications, which they can then further
pursue.

Chapter 1. This chapter introduces the current state of design verification in the
industry. Where do the bugs come from? Are they mostly functional bugs?

Chapter 2. This chapter discusses the overall design verification (DV) challenges
and solutions. Why is DV still such a long pole in the design cycle? We will discuss
a comprehensive verification plan and assess the type of expertise required and how
Develop => Simulate => Debug => Cover loop can be improved.

x

Chapter 3. This chapter discusses what SystemVerilog is. Is it a monolithic lan-
guage? Or is it an umbrella under which many languages with different syntax and
semantics work though a single simulation kernel? How did SystemVerilog came
about?

Chapter 4. This chapter describes in detail the architecture of UVM and UVM
hierarchy and discusses each hierarchical component (testbench, test, environment,
agent, scoreboard, driver, monitor, sequencer, etc.) in detail. Two complete exam-
ples of UVM are provided to solidify the concepts.

Chapter 5. This chapter describes constrained random verification (CRV). CRV
allows you to constrain your stimulus to better target a design function, thereby
allowing you to reach your coverage goal faster with accuracy. From that sense,
functional coverage and CRV go hand in hand. You check your coverage and see
where the coverage holes are. You then constrain your stimulus to target those holes
and improve coverage.

Chapter 6. This chapter discusses SVA (SystemVerilog Assertions) methodology,
SVA and functional coverage-driven methodology, and plenty of applications to
solidify the concepts. SystemVerilog Assertions (SVA) are one of the most impor-
tant components of SystemVerilog when it comes design verification. SVA is instru-
mental in finding corner cases, ease of debug, and coverage of design’s sequential
logic.

Chapter 7. This chapter discusses differences between code and functional cover-
age and SFC (SystemVerilog Functional Coverage) fundamentals such as “cover-
group,” “coverpoint,” “cross,” “transition,” etc. along with complete examples.
SystemVerilog Functional Coverage (SFC) is an important component that falls
within SystemVerilog.

Chapter 8. This chapter starts with the understanding of metastability and then
dives into different synchronizing techniques. It also discusses the role of
SystemVerilog Assertions in verification of CDC (clock domain crossing). We will
then discuss a complete methodology. CDC has become an ever-increasing problem
in multi-clock domain designs. One must solve issues not only at RTL level but also
consider the physical timing.

Chapter 9. This chapter discusses challenges and solutions of low-power verifica-
tion. It goes into sufficient depth of UPF (Unified Power Format) and how it applies
to design from Spec to GDSII level. Finally, it discusses low-power estimation and
verification at ESL level.

Chapter 10. This chapter discusses static verification, aka formal-based verifica-
tion. Static verification is an umbrella term, and there are many different technolo-
gies that fall under it: for example, logic equivalency check (LEC), clock domain
crossing check (CDC), X-state verification, low-power structural checks, ESL ⇔
RTL equivalency, etc. This chapter discusses all these topics and a lot more includ-
ing state-space explosion problem and the role of SystemVerilog Assertions.

Preface

xi

Chapter 11. This chapter discusses ESL (electronic system-level) technology,
methodology and OSCI TLM2.0 standard definition, virtual platform examples, and
how to use a virtual platform for design verification, among other topics.

Chapter 12. This chapter discusses the methodologies to develop software such
that it is ready when hardware is ready to ship. What kind of platform do you need?
How does ESL virtual platform play a key role? How do emulators and accelerators
fit in the methodology equation?

Chapter 13. This chapter discusses major challenges and solutions of AMS
(analog/mixed signal), the current state of affair, analog model abstraction levels,
real number modeling, SystemVerilog Assertions-based methodology, etc.

Chapter 14. This chapter discusses challenges, solutions, and methodologies of
SoC interconnect verification and a couple of EDA vendor solutions, among other
things. Today’s SoC contains hundreds of pre-verified IPs, memory controller,
DMA engines, etc. All these components need to communicate with each other
using many different interconnect technologies (cross-bus based, NoC (Network on
Chip) based, etc.).

Chapter 15. This chapter describes a complete product life cycle. Simply designing
the ASIC and shipping it is not enough. One needs to also consider the board design
into which this ASIC will be used. This chapter describes board-level design issues
and correlation between the board-level system design and the ASIC design and
verification.

Chapter 16. This chapter discusses, in detail, verification of a complex SoC,
namely, a voice over IP network SoC. We will go through a comprehensive verifica-
tion plan and describe each verification step with VoIP SoC-based real-life design.

Chapter 17. This chapter discusses, in detail, verification of a cache subsystem of
a large SoC. We will go through a comprehensive verification plan and describe
each verification step with a real-life Cache subsystem SoC verification strategy.
This chapter discusses the verification methodology using UVM agents.

Chapter 18. This chapter discusses, in detail, verification of a cache subsystem of
a larger SoC. We will go through a comprehensive verification plan and describe
each verification step with a real-life Cache subsystem SoC. This chapter discusses
the verification methodology using an instruction set simulator (ISS) (as opposed to
an UVM agent which is described in Chap. 17).

Preface

http://dx.doi.org/10.1007/978-3-319-59418-7_17

xiii

Acknowledgments

I am very grateful to the many people who helped with the review and editing of the
book. The following individuals made significant contributions to the viability of
the book:

Cuong Nguyen for a comprehensive and excellent chapter on the Complete
Product Design Life Cycle

Vijay Akkati for significant contribution to the chapter on UVM (Universal
Verification Methodology)

Frank Lee for his support and encouragement on all things verification
Bob Slee for facilitating close cooperation with EDA vendors
Norbert Eng for educating me on nuances of verification from the beginning of

my career
Sandeep Goel for encouragement and impetus for the book
In addition, and of great importance to me, is the encouragement, enthusiasm,

and support of my high school friends. Yes, we are still friends after all these years.
Affectionately called Class 11B (eleventh grade, B division), they supported my
endeavor through and through from the beginning until the end of writing this book.
Thank you 11B from the bottom of my heart.

I would also like to express my heartfelt thanks to my brother Shailesh and sis-
ters Raksha and Amita for their never-ending faith and confidence in my
endeavors.

And last but certainly not the least, I would like to thank my wife Ashraf Zahedi
for her enthusiasm and encouragement throughout the writing of this book and put-
ting up with long nights and weekends required to finish the book. She is the corner-
stone of my life, always with a smile and positive attitude to carry the day through
the ups and downs of life.

xv

Contents

	 1	� Introduction���     1
	1.1	�� Functional Design Verification: Current State of Affair �������������������     2
	1.2	�� Where Are the Bugs?���     3

	 2	� Functional Verification: Challenges and Solutions �������������������������������     5
	2.1	�� Verification Challenges and Solutions���     5

	2.1.1	�� Reduce Time to Develop���     6
	2.1.2	�� Reduce Time to Simulate���     7
	2.1.3	�� Reduce Time to Debug���     8
	2.1.4	�� Reduce Time to Cover: Check How Good

Is Your Testbench���    8
	2.2	�� A Comprehensive Verification Plan���    9

	 3	� SystemVerilog Paradigm ���    13
	3.1	�� SystemVerilog Language Umbrella���    13
	3.2	�� SystemVerilog Language Evolution��    15

	 4	� UVM (Universal Verification Methodology)���    17
	4.1	�� What Is UVM?���    17
	4.2	�� Polymorphism���    19
	4.3	�� UVM Hierarchy���    20

	4.3.1	�� UVM Testbench���    22
	4.3.2	�� UVM Test���    23
	4.3.3	�� UVM Environment ���    23
	4.3.4	�� UVM Agent���    24
	4.3.5	�� UVM Sequence Item���    25
	4.3.6	�� UVM Sequence���    26
	4.3.7	�� UVM Sequencer��    27
	4.3.8	�� UVM Driver���    27
	4.3.9	�� UVM Monitor ���    28
	4.3.10	�� UVM Scoreboard���    29

xvi

	4.4	�� UVM Class Library ���    29
	4.5	�� UVM Transaction-Level Communication Protocol: Basics �������������    30

	4.5.1	�� Basic Transaction-Level Communication�����������������������������    30
	4.5.2	�� Hierarchical Connections���    33
	4.5.3	�� Analysis Ports and Exports ���    34

	4.6	�� UVM Phases ���    35
	4.6.1	�� Build Phases���    35
	4.6.2	�� Run-Time Phases���    37
	4.6.3	�� Cleanup Phases ���    39

	4.7	�� UVM Example: One ���    41
	4.7.1	�� Modeling a Sequence Item��    41
	4.7.2	�� Building UVM Driver���    43
	4.7.3	�� Basic Sequencer and Driver Interaction���������������������������������    44
	4.7.4	�� Building UVM Sequencer���    46
	4.7.5	�� Building UVM Monitor���    46
	4.7.6	�� UVM Agent: Connecting Driver, Sequencer,

and Monitor���    47
	4.7.7	�� Building the Environment���    48
	4.7.8	�� UVM Top-Level Module (Testbench) Example �������������������    49

	4.8	�� UVM Example: Two���    51
	4.8.1	�� DUT: lpi.sv���    51
	4.8.2	�� lpi_if.sv ���    52
	4.8.3	�� lpi_seq_item.sv ���    53
	4.8.4	�� lpi_sequencer.sv���    53
	4.8.5	�� lpi_driver.sv���    53
	4.8.6	�� lpi_monitor.sv ���    54
	4.8.7	�� lpi_agent.sv ���    55
	4.8.8	�� lpi_basic_sequence.sv���    57
	4.8.9	�� lpi_basic_test.sv���    58
	4.8.10	�� lpi_env.sv���    59
	4.8.11	�� lpi_top_v_sequencer.sv���    60
	4.8.12	�� lpi top environment.sv���    60
	4.8.13	�� lpi_testbench.sv���    62

	4.9	�� UVM Is Reusable���    63

	 5	� Constrained Random Verification (CRV)���    65
	5.1	�� Productivity Gain with CRV ���    65
	5.2	�� CRV Methodology���    66
	5.3	�� Basics of CRV���    67

	5.3.1	�� Random Variables: Basics���    70
	5.3.2	�� Random Number System Functions and Methods����������������    71
	5.3.3	�� Random Weighted Case: Randcase���������������������������������������    73

	 6	� SystemVerilog Assertions (SVA) ���    75
	6.1	�� Evolution of SystemVerilog Assertions���    75
	6.2	�� SystemVerilog Assertion Advantages ���    76

Contents

xvii

	6.2.1	�� Assertions Shorten Time to Develop�������������������������������������    76
	6.2.2	�� Assertions Improve Observability���    77
	6.2.3	�� Assertions Shorten Time to Cover���    77
	6.2.4	�� One-Time Effort: Many Benefits���    80

	6.3	�� Creating an Assertion Test Plan: PCI Read Example �����������������������    81
	6.3.1	�� PCI: Read Protocol Assertion Test Plan

(Verification Team) ���    82
	6.3.2	�� PCI: Read Protocol Assertions Test Plan

(Design Team)���    83
	6.4	�� SVA Assertion Methodology Components ���������������������������������������    83

	6.4.1	�� What Type of Assertions Should I Add?�������������������������������    83
	6.4.2	�� Protocol for Adding Assertions���    85
	6.4.3	�� How Do I know I Have Enough Assertions?�������������������������    85
	6.4.4	�� Use Assertions for Specification and Review �����������������������    86

	6.5	�� Immediate Assertions���    87
	6.6	�� Concurrent Assertions���    89

	6.6.1	�� Overlapping and Nonoverlapping Operators�������������������������    90
	6.7	�� Clocking Basics���    90

	6.7.1	�� Sampling Edge (Clock Edge)��    92
	6.8	�� Concurrent Assertions: Binding Properties���������������������������������������    93

	6.8.1	�� Binding Properties (Scope Visibility) �����������������������������������    95
	6.9	�� Operators���    95

	6.9.1	�� ##m: Clock Delay ���    95
	6.9.2	�� ##[m:n]: Clock Delay Range���    98
	6.9.3	�� [*m]: Consecutive Repetition Operator���������������������������������    99
	6.9.4	�� [*m:n]: Consecutive Repetition Range ���������������������������������   100
	6.9.5	�� [=m]: Repetition Non-consecutive���   102
	6.9.6	�� [=m:n]: Repetition Non-consecutive Range �������������������������   103
	6.9.7	�� [->m] Non-consecutive GoTo Repetition Operator���������������   105
	6.9.8	�� sig1 throughout seq1���  � 106
	6.9.9	�� seq1 within seq2���  � 108
	6.9.10	�� seq1 and seq2���  � 108
	6.9.11	�� seq1 or seq2���  � 110
	6.9.12	�� seq1 intersect seq2���  � 110

	6.10	�� Local Variables���   111
	6.11	�� SystemVerilog Assertions: Applications ���   114

	6.11.1	�� SVA Application: Infinite Delay Range Operator�����������������   114
	6.11.2	�� SVA Application: Consecutive Delay

Range Operator ���   115
	6.11.3	�� SVA Application: Consecutive Delay

Range Operator ���   115
	6.11.4	�� SVA Application: Antecedent as Property Check.

Consequent as Hard Failure���   116
	6.11.5	�� SVA Application: State Transition Check

of a State Machine���   117

Contents

xviii

	6.11.6	�� SVA Application: Multi-threaded Operation�������������������������   120
	6.11.7	�� SVA Application: A Request ⇔ Grant Bus Protocol�������������   126
	6.11.8	�� SVA Application: Machine Check Exception�����������������������   126
	6.11.9	�� SVA Application: “req” followed by “ack”���������������������������   128

	 7	� SystemVerilog Functional Coverage (SFC) ���   129
	7.1	�� Difference Between Code Coverage and Functional

Coverage ���   129
	7.2	�� SystemVerilog Components for Complete Coverage �����������������������   130
	7.3	�� Assertion (ABV) and Functional Coverage

(SFC)-Based Methodology ���   131
	7.3.1	�� Follow the Bugs!���   134

	7.4	�� SystemVerilog “Covergroup” Basics���   135
	7.5	�� SystemVerilog “Coverpoint” Basics ���   136
	7.6	�� SystemVerilog “Bins”: Basics…���   136
	7.7	�� “Covergroup” in a “Class”���   138
	7.8	�� “Cross” Coverage���   139
	7.9	�� “Bins” for Transition Coverage���   141
	7.10	�� Performance Implications of Coverage Methodology�����������������������   142

	7.10.1	�� Know What You Should Cover ���   143
	7.10.2	�� Know When You Should Cover���   144

	7.11	�� When to “Cover” (Performance Implication) �����������������������������������   144
	7.12	�� SystemVerilog Functional Coverage: Applications���������������������������   145

	7.12.1	�� PCI Cycles���   145
	7.12.2	�� Frame Length Coverage���   147

	 8	� Clock Domain Crossing (CDC) Verification���   149
	8.1	�� Design Complexity and CDC ���   149
	8.2	�� Metastability ���   150
	8.3	�� Synchronizer ���   151

	8.3.1	�� Two-Flop Synchronizer (Identical Transmit
and Receive Clock Frequencies)���   151

	8.3.2	�� Three-Flop Synchronizer (High-Speed Designs)������������������   152
	8.3.3	�� Synchronizing Fast-Clock (Transmit)

into Slow-Clock (Receive) Domains�������������������������������������   153
	8.3.4	�� Multi-bit Synchronization���   155
	8.3.5	�� Design of an Asynchronous FIFO Using Gray

Code Counters���   156
	8.4	�� CDC Checks Using SystemVerilog Assertions���������������������������������   159
	8.5	�� CDC Verification Methodology���   161

	8.5.1	�� Automated CDC Verification���   163
	8.5.2	�� Step 1: Structural Verification ���   163
	8.5.3	�� Step 2: Protocol Verification ���   164
	8.5.4	�� Step 3: Debug���   164

	8.6	�� CDC Verification at Gate Level���   164
	8.7	�� EDA Vendors and CDC Tools Support ���   165

	8.7.1	�� Mentor���   166

Contents

xix

	 9	� Low-Power Verification ���   167
	9.1	�� Power Requirements: Current Industry Trend�����������������������������������   167
	9.2	�� Dynamic Low-Power Verification Challenges�����������������������������������   169
	9.3	�� UPF (Unified Power Format)���   170

	9.3.1	�� UPF Evolution���   171
	9.4	�� UPF Methodology���   172

	9.4.1	�� Low-Power Design Terminology/Definitions �����������������������   174
	9.5	�� UPF: Detailed SoC Example���   175

	9.5.1	�� Design/Logic Hierarchy Navigation �������������������������������������   175
	9.5.2	�� Power Domain Creation���   176
	9.5.3	�� Supply Power to the Power Domains:

Supply Network���   178
	9.5.4	�� Power Switch Creation ���   181
	9.5.5	�� Supply Port States ���   183
	9.5.6	�� Power State Table���   183
	9.5.7	�� State Retention Strategies ���   184
	9.5.8	�� Isolation Strategies���   186
	9.5.9	�� Level Shifting Strategies ���   188

	9.6	�� Power Estimation at Architecture Level ���   189
	9.7	�� UPF Features Subset (IEEE 1801–2009)���   191

	10	� Static Verification (Formal-Based Technologies)�����������������������������������   193
	10.1	�� What Is Static Verification?���   193
	10.2	�� Static Verification Umbrella���   195
	10.3	�� Static Formal Verification (Aka Model Checking

Aka Static Functional Verification)���   196
10.3.1	�� Critical Logic Blocks for Static Formal�����������������������������   196
10.3.2	�� SystemVerilog Assertions and Assumptions

for Static Formal and Simulation���������������������������������������   199
10.3.3	�� SystemVerilog “Assume” and Static Formal

Verification���   200
10.3.4	�� Static Formal vs. Simulation���   201

	10.4	�� Static Formal + Simulation Hybrid Verification
Methodology ���   202

	10.5	�� Logic Equivalence Check (LEC)���   203
10.5.1	�� LEC Technology ���   204
10.5.2	�� RTL to RTL Verification ���   206
10.5.3	�� RTL to Gate Verification���   207
10.5.4	�� Gate to Gate Verification���   207
10.5.5	�� ESL (C/ C++/ SystemC model) to RTL

(Sequential Equivalence Checking—SEC)�����������������������   207
10.5.6	�� Layout vs. Schematic (LVS) Physical Verification �����������   212
10.5.7	�� RTL Lint ���   215

	10.6	�� Structural Checks���   216
	10.7	�� Low Power Structural Checks���   217
	10.8	�� X-State Verification���   219
	10.9	�� Connectivity Verification���   220

Contents

xx

	11	� ESL (Electronic System Level) Verification Methodology �������������������   221
	11.1	�� ESL (Electronic System Level)���   221

11.1.1	�� How Does ESL Help with Verification? ���������������������������   222
11.1.2	�� ESL Virtual Platform Use Cases���������������������������������������   223

	11.2	�� OSCI TLM 2.0 Standard for ESL ���   224
11.2.1	�� Loosely Timed (LT) TLM 2.0 Transaction-Level

Modeling���   226
11.2.2	�� Approximately Timed (AT) TLM 2.0

Transaction-Level Modeling���   227
	11.3	�� Virtual Platform Example ���   229

11.3.1	�� Advantages of a Virtual Platform �������������������������������������   230
11.3.2	�� Open Virtual Platform (OVP) Initiative�����������������������������   230
11.3.3	�� Rationale for Software Virtual Platforms

(OVP n.d.)���   231
	11.4	�� ESL/Virtual Platform for Design Verification���������������������������������   232

11.4.1	�� Overview���   232
11.4.2	�� Virtual Platform and RTL Co-simulation

and Verification���   233
11.4.3	�� Virtual Platform as a Reference Model

in UVM Scoreboard���   234
11.4.4	�� ESL to RTL Reuse Methodology �������������������������������������   235
11.4.5	�� Design and Verification Reuse:

Algorithm ⇔ ESL: TLM 2.0���  � 237
11.4.6	�� Design and Verification Reuse:

ESL/TLM 2.0 ⇔ RTL���   238
11.4.7	�� Design and Verification Reuse:

Algorithm ⇔ ESL-TLM 2.0 ⇔ RTL���������������������������������   239

	12	� Hardware/Software Co-verification ���   243
	12.1	�� Overview���   243
	12.2	�� Hardware/Software Co-verification Using Virtual

Platform with Hardware Emulation���   244
12.2.1	�� Hardware Emulation and Prototyping�������������������������������   244
12.2.2	�� Emulation System Compile Time�������������������������������������   245
12.2.3	�� Difference Between Emulator

and FPGA-Based Prototype���   246
12.2.4	�� Myths About Emulation-Based Acceleration

(Rizzati)���   247
	12.3	�� Speed Bridge���   248
	12.4	�� Virtual Platform ⇔ Hardware Emulation Interface

and Methodology���   249
12.4.1	�� Different Types of Hardware/Software

Co-verification Configurations ���   250

Contents

xxi

	12.5	�� Hardware/Software Co-verification Using Virtual
Platform with Hardware Accelerator���   251
12.5.1	�� Cadence Palladium ���   252
12.5.2	�� Mentor Veloce���   252
12.5.3	�� Synopsys Zebu���   253

	13	� Analog/Mixed Signal (AMS) Verification���   255
	13.1	�� Overview���   255
	13.2	�� Major AMS Verification Challenges and Solutions�������������������������   256

13.2.1	�� Disparate Methodologies���   256
13.2.2	�� Analog Model Abstractions and Simulation

Performance���   257
13.2.3	�� Low-Power Management���   261

	13.3	�� Real Number Modeling (RNM) of Analog Blocks�������������������������   264
13.3.1	�� “wreal”���   265
13.3.2	�� “nettype” ���   267

	13.4	�� AMS Assertion (SVA)-Based Methodology�����������������������������������   269
	13.5	�� AMS Simulator: What Features Should It Support?�����������������������   270

13.5.1	�� Integrated Simulation Solution for Fastest
Simulation Throughput ���   270

13.5.2	�� Support for Wide Spectrum of Design Languages �����������   270
13.5.3	�� Support for Different Levels of Model Abstraction�����������   271
13.5.4	�� AMS Low-Power Verification Support�����������������������������   271
13.5.5	�� Support for SystemVerilog-Based UVM Methodology

Including Coverage-Driven and Assertion-Based
Methodologies���   271

	14	� SoC Interconnect Verification ���   273
	14.1	�� Overview���   273
	14.2	�� SoC Interconnect Verification: Challenges and Solutions���������������   274

14.2.1	�� Performance Analysis ���   276
	14.3	�� Interconnect Functional Correctness and Verification

Completeness���   277
14.3.1	�� SoC Interconnect Stimulus Generation�����������������������������   277

	14.4	�� Stress Verification: Random Concurrent Tests���������������������������������   278
	14.5	�� SoC Interconnect Response Checker���   278
	14.6	�� SoC Interconnect Coverage Measurement���������������������������������������   279
	14.7	�� Cadence® Interconnect Solution (Cadence-VIP n.d.)���������������������   280

14.7.1	�� Cadence ® Interconnect Validator (Basic)������������������������   280
14.7.2	�� Cadence ® Interconnect Validator

(Cache Coherent)���   282
14.7.3	�� Cadence ® Interconnect Workbench���������������������������������   282

	14.8	�� Synopsys Cache Coherent Subsystem Verification
Solution for Arteris Ncore Interconnect (NoC)�������������������������������   282

Contents

xxii

	15	� The Complete Product Design Life Cycle���   285
	15.1	�� Overview���   285
	15.2	�� Product Design and Development Flow ���   286

15.2.1	�� Design Specification ���   286
	15.3	�� PCB (Printed Circuit Board) Design���   288

15.3.1	�� Schematic Design ���   288
15.3.2	�� Pre-layout Signal Integrity (SI), Power Integrity (PI),

and Thermal Integrity (TI) Simulation �����������������������������   288
15.3.3	�� Layout, Fabrication, and Assembly�����������������������������������   291
15.3.4	�� Post-layout Signal Integrity (SI), Power Integrity (PI),

and Thermal Integrity (TI) Simulation �����������������������������   292
15.3.5	�� Hardware Bring-Up and Debug���   292

	15.4	�� ASIC/FPGA Design���   294
15.4.1	�� HDL Design���   294
15.4.2	�� Pre-synthesis Simulation���   295
15.4.3	�� Post-synthesis/Place and Route Simulation,

Timing Closure ���   295
15.4.4	�� Integration���   296

	15.5	�� Verification���   296
15.5.1	�� Test Plan Specification���   296
15.5.2	�� Testbench and Test Program Development�����������������������   297
15.5.3	�� Functional Test���   298
15.5.4	�� Gate-Level Verification ���   298
15.5.5	�� Functional/Gate Regression���   299

	15.6	�� Emulation���   300

	16	� Voice Over IP (VoIP) Network SoC Verification �����������������������������������   301
	 16.1	�� Voice Over IP (VoIP) Network SoC���   301
	 16.2	�� VoIP Network SoC Verification Plan���   301
	 16.3	�� Identify Subsystems Within VoIP Network SoC�����������������������������   302
	 16.4	�� Determine Subsystem Stimulus and Response Methodology���������   303
	 16.5	�� SoC Interconnect Verification���   305
	 16.6	�� Low-Power Verification���   306
	 16.7	�� Static Formal or Static + Simulation Hybrid Methodology �����������   306
	 16.8	�� Assertion Methodology���   307
	 16.9	�� Functional Coverage���   307
	 16.10	��Software/Hardware Co-verification���   308
	 16.11	��Simulation Regressions: Hardware Acceleration

or Emulation or FPGA Prototyping ���   308
	 16.12	��Virtual Platform���   309

	17	� Cache Memory Subsystem Verification: UVM Agent Based ���������������   311
	 17.1	�� Cache Subsystem���   311
	 17.2	�� Identify Subsystems Within the Cache Subsystem�������������������������   312
	 17.3	�� Determine Subsystem Stimulus and Response Methodology���������   313
	 17.4	�� Cache Subsystem Interconnect Verification �����������������������������������   315

Contents

xxiii

	 17.5	�� Low-Power Verification���   315
	 17.6	�� Static Formal or Static + Simulation Hybrid�����������������������������������   316
	 17.7	�� Assertions Methodology (SVA) ���   316
	 17.8	�� Coverage Methodology (Functional: SFC, Code,

and SVA “cover”) ���   317
	 17.9	�� Software/Hardware Co-verification���   317
	17.10	�� Simulation Regressions: Hardware Acceleration

or Emulation or FPGA Prototyping���   318
	17.11	�� ESL: Virtual Platform for Software and Test Development�������������   318

	18	� Cache Memory Subsystem Verification: ISS Based�������������������������������   319

�Bibliography ���   323

�Index���   325

Contents

xxv

List of Figures

Fig. 1.1	 Verification cost increases as the technology node shrinks��������������������� 3
Fig. 1.2	 Design productivity and design complexity��� 3
Fig. 1.3	 ASIC respin causes (Collett)��� 4

Fig. 2.1	 Typical design verification methodology loop��� 6

Fig. 3.1	 SystemVerilog language paradigm ��� 14
Fig. 3.2	 SystemVerilog evolution ��� 15

Fig. 4.1	 Evolution of UVM��� 18
Fig. 4.2	 UVM hierarchy (Accelera, Universal Verification

Methodology (UVM) 1.2 User’s guide)��� 21
Fig. 4.3	 UVM transaction-level testbench��� 22
Fig. 4.4	 UVM agent��� 24
Fig. 4.5	 UVM class library hierarchy (Accelera, Universal Verification

Methodology (UVM) 1.2 User’s guide)��� 30
Fig. 4.6	 UVM producer port to consumer export��� 31
Fig. 4.7	 Producer export to consumer port��� 32
Fig. 4.8	 Producer to consumer via TLM FIFO��� 33
Fig. 4.9	 Stimulus to driver hierarchical connection ��� 33
Fig. 4.10	 Analysis port ��� 34
Fig. 4.11	 UVM phases (MentorGraphics)��� 36
Fig. 4.12	 Sequencer driver connection��� 44
Fig. 4.13	 UVM environment��� 48
Fig. 4.14	 Reusable UVM example ��� 63

Fig. 5.1	 Advantage of coverage-driven constrained random
verification methodology��� 66

Fig. 5.2	 Constrained random verification methodology������������������������������������� 67
Fig. 5.3	 Constrained random verification example��� 69

Fig. 6.1	 SystemVerilog Assertion evolution��� 76
Fig. 6.2	 Difference between SystemVerilog and SVA ��������������������������������������� 76

xxvi

Fig. 6.3	 Assertions improve observability��� 78
Fig. 6.4	 Assertions shorten time to full coverage��� 78
Fig. 6.5	 Multiple uses of SVA��� 80
Fig. 6.6	 PCI read cycle ��� 81
Fig. 6.7	 PCI: basic read protocol test plan (verification team)��������������������������� 82
Fig. 6.8	 Basic read protocol test plan: design team��� 84
Fig. 6.9	 Immediate assertion example��� 87
Fig. 6.10	 Concurrent assertion example��� 89
Fig. 6.11	 Overlapping and nonoverlapping operators��� 91
Fig. 6.12	 Clocking basics—assertions ��� 91
Fig. 6.13	 Assertion sampling edge and simulation time tick phases��������������������� 92
Fig. 6.14	 Binding properties—assertions��� 94
Fig. 6.15	 Binding properties 2—assertions��� 94
Fig. 6.16	 “BIND”ing properties. Scope visibility��� 96
Fig. 6.17	 Operators—concurrent assertions��� 97
Fig. 6.18	 Clock delay operator ##m��� 98
Fig. 6.19	 Clock delay range operator ##[m:n] ��� 99
Fig. 6.20	 Consecutive repetition operator [*m] ��� 100
Fig. 6.21	 Consecutive range operator��� 101
Fig. 6.22	 Non-consecutive repetition operator [=m]��� 103
Fig. 6.23	 Non-consecutive repetition range operator [=m:n]����������������������������� 104
Fig. 6.24	 Non-consecutive GoTo repetition operator ��� 105
Fig. 6.25	 throughout operator��� 106
Fig. 6.26	 Application: sig1 throughout seq1��� 107
Fig. 6.27	 sig1 throughout seq1—application simulation log ����������������������������� 107
Fig. 6.28	 within operator��� 109
Fig. 6.29	 “and” operator��� 109
Fig. 6.30	 “or” operator ��� 110
Fig. 6.31	 intersect operator��� 111
Fig. 6.32	 Local variables—basics��� 112
Fig. 6.33	 Local variables—do’s and don’ts��� 113
Fig. 6.34	 Concurrent assertions—application��� 114
Fig. 6.35	 SVA Application—consecutive delay range operator������������������������� 115
Fig. 6.36	 SVA Application—consecutive delay range operator������������������������� 116
Fig. 6.37	 Concurrent assertions—application��� 117
Fig. 6.38	 Concurrent assertions—application��� 118
Fig. 6.39	 Multi-threading—concurrent assertions ��� 120
Fig. 6.40	 Concurrent assertions—application��� 127
Fig. 6.41	 SVA Application: machine check exception��������������������������������������� 127
Fig. 6.42	 SVA Application: “req” followed by “ack”��� 128

Fig. 7.1	 ASIC design functional coverage methodology ��������������������������������� 131
Fig. 7.2	 Automated coverage-driven design verification methodology ����������� 132
Fig. 7.3	 Coverage- and assertion-driven design verification

methodology ��� 133

List of Figures

xxvii

Fig. 7.4	 Covergroup basics��� 135
Fig. 7.5	 “Bins”: Basics ��� 137
Fig. 7.6	 Covergroup in a class��� 138
Fig. 7.7	 Cross coverage��� 139
Fig. 7.8	 “Cross” coverage: Simulation log��� 140
Fig. 7.9	 Transition coverage��� 142
Fig. 7.10	 “Bins” of transition ��� 143
Fig. 7.11	 Functional coverage: Performance implication����������������������������������� 144
Fig. 7.12	 Functional coverage: Application ��� 146
Fig. 7.13	 Functional coverage: Application ��� 146
Fig. 7.14	 Functional coverage: Application ��� 147

Fig. 8.1	 Clock domain crossing—metastability ��� 150
Fig. 8.2	 Clock domain crossing—two-flop single-bit synchronizer����������������� 151
Fig. 8.3	 Clock domain crossing—synchronizer—waveform��������������������������� 152
Fig. 8.4	 Three-flop single-bit synchronizer��� 153
Fig. 8.5	 Two-flop single-bit synchronizer��� 153
Fig. 8.6	 Faster transmit clock to slower receive clock—two-flop

synchronizer won’t work��� 154
Fig. 8.7	 Lengthened transmit pulse for correct capture in receive

clock domain��� 154
Fig. 8.8	 Clock domain crossing—re-convergent fanout and CDC������������������� 162
Fig. 8.9	 Clock domain crossing—automated methodology����������������������������� 163
Fig. 8.10	 Gate-level CDC��� 165
Fig. 8.11	 Mentor Questa CDC methodology ��� 166

Fig. 9.1	 Power requirements vs. power trend��� 168
Fig. 9.2	 UPF evolution (courtesy IEEE Standards Association)����������������������� 172
Fig. 9.3	 UPF methodology ��� 173
Fig. 9.4	 UPF: design/logic hierarchy navigation��� 175
Fig. 9.5	 UPF: power domain creation – 1��� 177
Fig. 9.6	 UPF: power domain creation—2��� 178
Fig. 9.7	 UPF supply network ��� 179
Fig. 9.8	 UPF: supply network reuse��� 180
Fig. 9.9	 UPF: power switch creation��� 181
Fig. 9.10	 UPF: supply port states ��� 182
Fig. 9.11	 UPF: power state table��� 184
Fig. 9.12	 UPF: state retention strategy��� 185
Fig. 9.13	 State table showing isolation requirements��� 186
Fig. 9.14	 UPF state isolation strategy��� 187
Fig. 9.15	 Level shifting strategy��� 188
Fig. 9.16	 UPF: level shifter strategy��� 189
Fig. 9.17	 Power estimation at architectural level ��� 190
Fig. 9.18	 UPF features—IEEE 1801–2009��� 191

List of Figures

xxviii

Fig. 10.1	 Static formal verification (aka model checking or static
functional verification)��� 197

Fig. 10.2	 State-space of static formal verification��� 198
Fig. 10.3	 Static formal, static formal + simulation hybrid,

and simulation-only-based methodologies ��� 200
Fig. 10.4	 SystemVerilog “assume” for static formal��� 201
Fig. 10.5	 Static formal vs. simulation (Andrew Jones

and Jeremy Sonander)��� 202
Fig. 10.6	 Static formal + simulation hybrid verification methodology��������������� 203
Fig. 10.7	 Logic cone��� 205
Fig. 10.8	 Logic cone: pass-and-fail scenario��� 206
Fig. 10.9	 ESL to RTL equivalence example��� 210
Fig. 10.10	ESL to RTL equivalence flow ��� 210
Fig. 10.11	Sequential equivalence checking (Anmol Mathur)����������������������������� 211
Fig. 10.12	Synopsys HECTOR: ESL to RTL equivalence product���������������������� 212
Fig. 10.13	LVS design methodology flow��� 213
Fig. 10.14	Cadence Conformal Low Power XL© (Cadence)

Equivalency Check methodology ��� 218

Fig. 11.1	 Virtual platform: multiple use cases ��� 224
Fig. 11.2	 TLM2.0 interoperability layer (OSCI TLM-2.0 LRM)����������������������� 225
Fig. 11.3	 TLM2.0 use cases and coding styles (OSCI TLM2.0 LRM)��������������� 226
Fig. 11.4	 LT model with blocking transport call��� 227
Fig. 11.5	 AT modeling style with non-blocking transport calls ������������������������� 228
Fig. 11.6	 Virtual platform to boot Linux��� 230
Fig. 11.7	 Verification using TLM2.0 virtual platform

and RTL co-simulation ��� 233
Fig. 11.8	 Verification using TLM2.0 virtual platform

and RTL co-simulation using SC_DPI ��� 235
Fig. 11.9	 Virtual platform as a reference model in UVM scoreboard����������������� 236
Fig. 11.10	Design and verification reuse: Algorithm ESL—TLM 2.0����������������� 238
Fig. 11.11	Design and verification reuse: ESL/TLM 2.0—RTL��������������������������� 239
Fig. 11.12	Design and verification reuse:

Algorithm—ESL-TLM 2.0—RTL��� 240

Fig. 12.1	 Virtual platform and hardware emulator methodology����������������������� 249
Fig. 12.2	 Different types of hardware/software co-verification

configurations��� 251
Fig. 12.3	 Cadence Palladium XP Unified Xccelerator Emulator (UXE) ����������� 252
Fig. 12.4	 Mentor Graphics Veloce emulator/accelerator������������������������������������� 253
Fig. 12.5	 Synopsys Zebu emulator/accelerator��� 253

Fig. 13.1	 Analog/mixed signal (AMS) design trends��� 256
Fig. 13.2	 Model abstraction level, accuracy, and simulation performance��������� 258
Fig. 13.3	 Logical (digital) to electrical (analog) connect module����������������������� 262
Fig. 13.4	 Electrical (analog) to logical (digital) connect module����������������������� 263

List of Figures

xxix

Fig. 13.5	 Reference voltage selection for power-aware electrical
to logic connect module��� 263

Fig. 13.6	 Multiple drivers and nominal voltage conflicts����������������������������������� 264

Fig. 14.1	 SoC interconnect example��� 274
Fig. 14.2	 Cadence Interconnect Validator (Basic—non-coherent)��������������������� 281
Fig. 14.3	 Cadence Interconnect Workbench��� 283

Fig. 15.1	 Xilinx VCU108 development board ��� 286
Fig. 15.2	 Product design and development flow��� 287
Fig. 15.3	 Stack-up design of a PCB ��� 289
Fig. 15.4	 Schematic capture for an HDMI��� 290
Fig. 15.5	 Signal integrity simulation for pre- and post-layout ��������������������������� 291
Fig. 15.6	 Thermal simulation ��� 293
Fig. 15.7	 Network analyzer for system debug��� 294
Fig. 15.8	 Testbench development��� 297
Fig. 15.9	 Functional simulation�� 298

Fig. 16.1	 Voice over IP (VoIP) SoC verification��� 302
Fig. 16.2	 Power State Table for network SoC��� 306

Fig. 17.1	 Cache subsystem verification using UVM agents������������������������������� 312

Fig. 18.1	 Cache memory subsystem verification using ISS CPU models����������� 320

List of Figures

xxxi

About the Author

Ashok Mehta has been working in the ASIC/SoC design and verification field for
over 30 years. He started his career at Digital Equipment Corporation (DEC) work-
ing as a CPU design engineer. He then worked at Data General and Intel (first
Pentium architecture verification team) and, after a route of a couple of startups,
worked at Applied Micro and currently at TSMC.

He was a very early adopter of Verilog and participated in Verilog, VHDL, iHDL
(Intel HDL), and SDF (standard delay format) technical subcommittees. He has also
been a proponent of ESL (electronic system-level) designs. At TSMC, he archi-
tected and went into production with two industry standard TSMC ESL reference
flows that take designs from ESL to RTL while preserving the verification environ-
ment for reuse from ESL to RTL.

He holds 17 US patents in the field of SoC and 3DIC design verification.
He is also the author of the second edition of the book SystemVerilog Assertions

and Functional Coverage: A Comprehensive Guide to Languages, Methodologies
and Applications (Springer, June 2016).

Ashok earned an MSEE from the University of Missouri.
In his spare time, he is an amateur photographer and likes to play drums on 1970s

rock music driving his neighbors up the wall.☺

1© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_1

Chapter 1
Introduction

ASIC functional design verification has been and continues to be a long pole in the
entire design cycle from architecture to GDS-II tape-out. Many excellent method-
ologies have emerged to tackle this never-ending dilemma. UVM (Universal
Verification Methodology) and UPF (Unified Power Format for Low Power) have
now become cornerstones of pretty much all functional design verification method-
ologies, at least for complex SoC designs. It is indeed a robust, configurable, trans-
action level reusable methodology. Gone are the days when ad hoc Verilog
testbenches ruled the verification domain. Reusability was sparse.

Design verification (DV) is a large and complex domain that contains many tech-
nologies, languages, and methodologies. A DV engineer cannot get away with
SystemVerilog, UVM, and hardware microarchitecture knowledge alone. She/he
needs to grasp as much of the DV domain as possible and help with each aspect of
the DV project as necessary. A DV engineer should not get pigeonholed in only one
of many technologies that fall under DV umbrella.

At the least, the following technologies fall under DV domain:

•	 UVM (Universal Verification Methodology).
•	 UPF (Unified Power Format) low-power verification using UPF.
•	 AMS (analog/mixed signal) verification. Real number modeling, etc.
•	 SystemVerilog Assertions (SVA) and functional coverage (SFC) languages and

methodology.
•	 Coverage-driven verification (CDV) and constrained random verification (CRV).
•	 Static verification technologies. Static formal verification (model checking),

static + simulation hybrid methodology, X-state verification, CDC (clock domain
crossing), etc.

•	 Logic equivalency check (LEC). Design teams mostly take on this task. But the
DV (design verification) team also needs to have this expertise.

•	 ESL—Electronic System Level (TLM 2.0) virtual platform development (for
both software development and verification tests/reference model
development).

2

•	 Hardware/software co-verification (hint: use virtual platform methodology).
•	 SoC interconnect (bus-based and NoC—network-on-chip) verification.
•	 Simulation speedup using hardware acceleration, emulation, and prototyping.

The book focuses on these technologies and gives the reader a good comprehen-
sive overview of the entire design verification paradigm. Sufficient detail is given
for each technology to let the reader fully immerse in the technology/methodology
under discussion after which they can look up further detail from a reference book
or any other resource. A list of recommended books is given at the end of the book.

1.1  �Functional Design Verification: Current State of Affair

As is well known in the industry, the design complexity at 16 nm and below node is
exploding. Small form factor requirements and conflicting demands of high perfor-
mance and low power and small area result in ever so complex design architecture.
Multi-core, multi-threading, and power, performance, and area (PPA) demands
exacerbate the design complexity and functional verification thereof.

The burden lies on functional and sequential functional domain verification to make
sure that the design adheres to the specification. Not only is RTL (and virtual platform
level) functional verification important but so is silicon validation. Days when engineer-
ing teams would take months to validate the silicon in the lab are over. What can you do
during pre-silicon verification to guarantee post-silicon validation a first pass success?

The biggest challenge that the companies face is short time-to-market to deliver
first pass working silicon of increasing complexity. Functional design verification is
the long poll to design tape-out. Here are two key problem statements:

	1.	 Design verification productivity: 40–50% of project resources go to functional
design verification. The chart in Fig. 1.1 shows design cost for different parts of a
design cycle. As is evident, the design verification cost component is about 40+% of
the total design cost. In other words, this problem states that we must increase the
productivity of functional design verification and shorten the design ⇔ simulate ⇔
debug ⇔ cover loop. This is a productivity issue, which needs to be addressed.

Continuing with the productivity issue, the chart in Fig. 1.2 shows that the com-
pounded complexity growth rate per year is 58% while the compounded productiv-
ity growth rate is only 21%. There is a huge gap between what needs to get done and
what is getting done. This is another example of why the productivity of design
cycle components such as functional design verification must be improved.

	2.	 Design coverage: The second problem statement states that more than 50% of
designs require respin due to functional bugs. One of the factors that contribute
to this is the fact that we did not objectively determine before tape-out that we
had really covered the entire design space with our testbench. The motto “If it’s
not verified, it will not work” seems to have taken hold in design cycle. Not
knowing if you have indeed covered the entire design space is the real culprit
toward escaped bugs and functional silicon failures.

1  Introduction

3

Fig. 1.1  Verification cost increases as the technology node shrinks

Fig. 1.2  Design productivity and design complexity

1.2  �Where Are the Bugs?

As Fig. 1.3 shows, up to 80% of designs require a respin due to a functional bug.
That’s a huge problem. You better deploy an all compassing functional verification
methodology that goes beyond UVM.

In the next chapter, we’ll see how to solve these challenges.

1.1  Functional Design Verification: Current State of Affair

4

0%

Other

Firmware

IR Drops

Power Consumption

Mixed-Signal Interface

Slow Path

Delays/Glitches

Yield/Reliability

Fast Path

Tuning Analog Circuit

Clocking

Logic/Functional

IC/ASIC Designs Requiring Re-Spins by Type of Flaw

71%
75%

20% 40% 60% 80% 100%

2002 Market Study

2004 Market Study

Percent of Designs Requiring Two or More Silicon Spins

Source: 2004/2002 IC/ASIC Functional Verification Study. Collett International Research. Used with Permission

Fig. 1.3  ASIC respin causes (Collett)

1  Introduction

5© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_2

Chapter 2
Functional Verification: Challenges
and Solutions

Chapter Introduction
This chapter will discuss the overall design verification (DV) challenges and solu-
tions. Why is DV still such a long pole in the design cycle? We will discuss a com-
prehensive verification plan and see the type of expertise required at each step of
verification and how to improve the develop => simulate => debug => cover loop.

2.1  �Verification Challenges and Solutions

So, what are the specific challenges that SoC design verification faces? Why is it
such a long pole? Let us look at the higher-level challenges and their solutions. After
that, we’ll go through a detailed verification plan that the author has successfully
deployed in many successful projects.

Here’s a simplified, but to the point, functional verification cycle (Fig. 2.1). The
cycle consists of four phases:

	1.	 Development: verification plan, DV architecture, testbench, and tests
development.

	2.	 Simulation: software simulation, acceleration, emulation, etc.
	3.	 Debug: transaction level, signal level, etc. This will be a big component if you

did not deploy assertions, for example.
	4.	 Cover: functional, code, and SVA coverage that feeds back to the development

stage.

Each of these four phases poses significant challenges. Obviously, we need to
reduce the time to complete and improve efficiency and robustness of the tasks at
each stage:

	1.	 Reduce time to develop and improve robustness.
	2.	 Reduce time to simulate and improve simulation accuracy and throughput.

6

	3.	 Reduce time to debug and improve efficiency.
	4.	 Reduce time to “comprehensive” cover.

Let us solve the challenge of reducing time and improving robustness at each
stage of the functional verification cycle.

2.1.1  �Reduce Time to Develop

Development time includes functional verification plan development, verification
environment creation, DV architecture development, testbench development, and
tests development. Of these, the tests and testbench development are the most time
consuming. Here is a strategy to reduce time to develop.

	1.	 Raise abstraction level of tests. Use TLM (Transaction Level Modeling) methodolo-
gies such as UVM, SystemVerilog/C++/DPI, etc. The higher the abstraction level,
the easier it is to model and maintain verification logic. Modification and debug of
transaction level logic is much easier, further reducing time to develop testbench,
reference models (scoreboard), peripheral models, and other such verification logic.

	2.	 Use constrained random verification (CRV) methodologies to reach exhaustive
coverage with fewer tests. CRV is discussed in detail in Chap. 5. Fewer tests
mean less time to develop and debug.

Develop Simulate

DebugCover

Fig. 2.1  Typical design
verification methodology
loop

2  Functional Verification: Challenges and Solutions

http://dx.doi.org/10.1007/978-3-319-59418-7_5

7

	3.	 Develop verification components (e.g., UVM agents) that are reusable. Make
them parameterized for adoptability in future projects. UVM is discussed in
detail in Chap. 4.

	4.	 Use SystemVerilog Assertions (SVA) to reduce time to develop complex sequen-
tial and combinatorial checks. As we will see, assertions are intuitive and much
simpler to model, especially for complex temporal domain checks. Verilog code
for a given assertion will be much lengthier, hard to model, and hard to debug. SVA
indeed reduces time to develop and debug. SVA is discussed in detail in Chap. 6.

Verification Plan Development
Instead of using the age old .docx- or .xls-based plans, use the new technology/tools
available from EDA vendors that allow an automated and coverage-driven verifica-
tion plan development in an organized way. The plan needs to correlate to the design
specification in an intuitive and comprehensive manner. Changes in design specs
should be automated to reflect in the verification plan.

Nothing is fully automated in life (unfortunately). Even with automation, you
need to carefully layout what is it that you need to include in a verification plan.
Verification plan is only as good as your knowledge of the design architecture and
to some extent microarchitecture. Detailed attention needs to be given to issues such
as asynchronous FIFO, state transitions, live locks, dead locks, etc. Relaying only
on end-to-end verification can miss corner cases. All this needs to be specified in a
verification plan. A comprehensive verification plan will go a long way in reducing
time and effort consumed by the later stages of verification.

A comprehensive verification plan is presented in Sect. 2.2.

2.1.2  �Reduce Time to Simulate

•	 Higher-level abstractions simulate much faster than pure RTL testbench which is
modeled at signal level. Use transaction level testbench (e.g., UVM, TLM 2.0
transaction level models). TLM reduces time to develop, debug, and simulate.
Electronic system level (i.e., TLM 2.0 level modeling) has come a long way for
practical deployment in verification environments. Refer to Chap. 11 for com-
plete detail on ESL and TLM 2.0 methodology.

•	 Deploy well-thought-out hardware acceleration, emulation, or FPGA prototype
methodologies. Develop transaction level testbenches that interact directly with
the accelerated or emulated design. Chapter 12 is devoted to deploying hardware
acceleration, emulation, and virtual prototyping to speed up simulation as well as
develop software.

•	 Use coverage-driven verification (CDV) methodologies to reduce the number of
tests to simulate to reach the defined coverage goals. Refer to Chap. 7 on func-
tional coverage to understand CDV.

2.1  Verification Challenges and Solutions

http://dx.doi.org/10.1007/978-3-319-59418-7_4
http://dx.doi.org/10.1007/978-3-319-59418-7_6
http://dx.doi.org/10.1007/978-3-319-59418-7_11
http://dx.doi.org/10.1007/978-3-319-59418-7_12
http://dx.doi.org/10.1007/978-3-319-59418-7_7

8

2.1.3  �Reduce Time to Debug

•	 Use SystemVerilog Assertion-based verification (ABV) methodology to quickly
reach to the source of the bug. As we will see (Chap. 6), assertions are placed at
various places in design to catch bugs where they occur. Traditional way of
debug is at IO level. You detect the effect of a bug at primary output. You then
trace back from primary output until you find the cause of the bug resulting in
lengthy debug time. In contrast, an SVA points directly at the source of the fail-
ure (e.g., a FIFO overflow assertion will point directly to the FIFO overflow logic
in RTL that failed) drastically reducing the debug effort.

•	 Use transaction level methodologies to reduce debugging effort (and not get
bogged down into signal level granularity).

•	 Constrained random verification allows for fewer tests. They also narrow down
the cone of logic to debug. CRV indeed reduces time to debug.

2.1.4  �Reduce Time to Cover: Check How Good Is Your
Testbench

•	 Use SystemVerilog functional coverage language to measure the intent of the
design. How well have your testbench verified the “intent” of the design. For
example, have you verified all transition of write/read/snoop on the bus? Have
you verified that a CPU1-snoop occurs to the same line while a CP2-write invalid
occurs to the same line? Code coverage will not help with this. We will cover
functional coverage in plenty detail in Chap. 7.

•	 Use cover feature of SystemVerilog Assertions to cover complex sequential
domain specification of your design. As we will see in Chap. 7, “cover” helps
with making sure that you have exercised low-level sequential domain condi-
tions with your testbench. If an assertion does not fire, that does not necessarily
mean that there is no bug. One of the reasons for an assertion to not fire is that
you probably never stimulated the required condition (antecedent) in the first
place. If you do not stimulate a condition, how would you know if there is indeed
a bug in the design? “Cover” helps you determine if you have indeed exercised
the required temporal domain condition.

•	 Use code coverage to cover structural coverage (yes, code coverage is still
important as the first line of defense even though it simply provides structural
coverage). As we will see in detail in the section on SV functional coverage,
structural coverage does not verify the intent of the design, it simply sees that the
code that you have written has been exercised (e.g., have you verified all “case”
items of a “case” statement, or toggled all possible assigns, conditional expres-
sions, states, etc.). Nonetheless, code coverage is still important as a starting
point to measure coverage of the design.

2  Functional Verification: Challenges and Solutions

http://dx.doi.org/10.1007/978-3-319-59418-7_6
http://dx.doi.org/10.1007/978-3-319-59418-7_7
http://dx.doi.org/10.1007/978-3-319-59418-7_7

9

2.2  �A Comprehensive Verification Plan

Following verification plan is typical of large SoC projects. Let us also establish
during each step the type of expertise required. That will tell us the need for a well-
diversified DV team. Each of the following verification plan point is discussed in
detail throughout the rest of the book. This is mainly a higher-level snapshot.
Chapters 15 (Voice over IP SoC) and 16 (Cache Memory Subsystem) will showcase
real-life verification plans based on the outline described below.

Here is the outline of a comprehensive verification plan.

	1.	 Identify Subsystems Within Your SoC

•	 For example, audio subsystem, memory subsystem, graphics subsystem, etc.
•	 You start verification of subsystems and then move onto concurrent subsys-

tems leading to full system verification.
•	 Subsystem also allows you to determine a methodology for subsystem-block

level stimulus/response methodology. Block level verification can/will be
imported to subsystem level verification.

–– Expertise: Hardware design architecture and microarchitecture.

	2.	 Determine Subsystem Stimulus and Response Methodology

•	 For example, graphics subsystem will require a “way” to feed the external bus
with a single/multi-frame input. What should be the format for this input
data? How would you measure response? How many different UVM agents
would you need? What type of scoreboard? Reference Model?

–– Expertise: Hardware design architecture and microarchitecture. UVM,
SVA, C/C++, SystemC/TLM2.0.

	3.	 Stimulus Traffic Generation Requirements

•	 For example, what type of traffic would you generate for a video subsystem?
Will that be single frame? Multi-frame? Do you require a live video stream?
How will that simulate on RTL? How would you verify without a live stream?

•	 How will you generate Ethernet traffic? An external software stack (won’t
find all the bugs) or a constrained random packet generator (much better
choice)?

–– Expertise: SoC design verification, UVM, SVA, C/C++, SystemC/TLM2.

	4.	 Subsystem Response Checking Methodology

•	 How will you check the output of a video engine/subsystem?
•	 How will you detect a corrupt Ethernet packet transmission?
•	 How will you check for SoC interrupt generation logic (i.e., did the logic

generate an interrupt when a corrupt Ethernet packet was received)?
•	 For a CPU, how will you check for the CPU architectural state integrity at the

end of an instruction?

2.2  A Comprehensive Verification Plan

http://dx.doi.org/10.1007/978-3-319-59418-7_15
http://dx.doi.org/10.1007/978-3-319-59418-7_16

10

•	 What about reference model generation? Do you need it? What will be the
sync point between transaction level reference model output and signal level
RTL output?

•	 What is the methodology for deploying assertions both at the microarchitec-
tural level and block/SoC IO level interface?

–– Expertise: Reference model generation, UVM, SVA, TLM2.0, etc.

	5.	 SoC Interconnect: Determine Verification of Either an NoC (Network on
Chip), Cache Coherent NoC- or Bus-Based Interconnect

•	 Again, how would you generate real traffic to verify the interconnect?
•	 Would you create “stub” models (i.e., BFM/UVM agents) to act as initiators

and targets of the interconnect? What kind of stimulus would you provide to
these UVM agents to stress the interconnect?

•	 What would be your methodology for performance measurement of the
interconnect?

–– Expertise: Knowledge of NoC and bus interconnect. UVM, SVA, SFC,
NoC generation tools.

	6.	 Low-Power Verification

•	 Identify power subdomains. Power switches. Isolation cells. Retention cells.
•	 Create UPF generation methodology. Can it be automated?
•	 Determine stimulus strategy to verify each individual power domain turned

ON/OFF. Verify the same with multiple power domains.

–– Expertise: UPF, low-power technology, power domains, power switches,
isolation cells, retention cells, single- and multi-power domain
concurrency.

	7.	 Static Formal or Static + Simulation Hybrid Methodology

•	 Static formal (as of the writing of this book) does not work at full SoC level
for a large SoC. So, start with identifying control logic paths where assertions
can be written to limit the logic cone(s). Identify critical clock domain cross-
ing blocks, critical state machines, asynchronous logic interfaces, etc. Static
formal has the problem of state/space explosion for larger logic blocks. Static
formal exercises all possible permutations of combinational and sequential
domain tests to see that the assertion holds. So, what’s the strategy to partition
the blocks?

•	 If static formal does not work, identify tools that allow static + simulation
hybrid simulation. This methodology will simulate inputs to the logic cone,
determine valid input values, and then apply static formal to see if assertions
hold.

–– Expertise: Static formal and static + hybrid formal tools.

	8.	 SystemVerilog Assertions (SVA) Methodology

2  Functional Verification: Challenges and Solutions

11

Deploying SystemVerilog Assertions is one of the most important strategies you
can deploy to reduce time to cover, develop, and debug. Carefully plan on writing
assertions for microarchitecture, subsystem, system, IO interface, inter-block inter-
face, and critical state machines.

•	 Assertions need to be added to RTL by designers while block and SoC level
interface assertions need to be added by the DV engineers.

•	 How will you know that you have added enough assertions? Rule of thumb
is if a test fails and none of the assertions fire, you haven’t placed assertions
in the failing path.

–– Expertise: SystemVerilog Assertions language and methodology. Note that
UVM does not cover SVA language.

	 9.	 Functional Coverage

•	 Determine logic that needs to be functionally covered.
•	 How will you leverage code coverage with SystemVerilog functional

coverage?
•	 What’s the strategy to constraint stimulus to achieve desired functional

coverage?
•	 How will you determine that you have specified all required coverpoints and

covergroups? This is the hardest (and sometimes subjective) question to
answer. Continue to add functional coverpoints as the project progresses. Do
not consider the very first coverage plan to be an end in all.

–– Expertise: UVM, SystemVerilog functional coverage language. UVM
does not cover SFC language.

	10.	 Software/Hardware Co-verification?

•	 Think about deploying advanced methodologies such as TLM2.0 (ESL) ⇔
RTL. This allows you to speed up software running on a virtual platform of
the SoC. TLM2.0 is transaction level and so is UVM. So, integration of
UVM testbench with software virtual platform will not have significant
challenges. You will be able to run software code with such methodology. If
TLM2.0 virtual platform is not your cup of tea, have a plan to deploy hard-
ware acceleration or emulation to do hardware-software co-verification.

–– Expertise: TLM2.0 SystemC. C++ expertise. SystemC TLM2.0 is an
entirely different language orthogonal to SystemVerilog. Simulation accel-
eration, emulation, and FPGA prototyping.

	11.	 Simulation Regressions: Hardware Acceleration or Emulation or FPGA
Prototyping

•	 What are the pros/cons of acceleration vs. emulation vs. prototyping?
•	 Acceleration will have better debug capabilities than emulation.

–– But the speed maybe in a few MHz at best.

2.2  A Comprehensive Verification Plan

12

–– Does acceleration provide enough speed for software development?
–– If the testbench is still in SystemVerilog (i.e., outside the acceleration box),

will the SystemVerilog ⇔ acceleration maintain required speed?
–– What about memories? What about multiple clocks? What is the debug

strategy?
–– How about assertions? Will they compile into acceleration hardware?
–– How will functional coverage be measured?

Expertise: Knowledge of hardware acceleration. RTL to acceleration
netlist mapping, multi-clock domain, etc.

•	 Emulation will be orders of magnitude faster than acceleration.

–– BUT emulation cannot start until RTL is ready. Since that is the case, will
it be too late for software development?

–– How easy/hard will it be to debug since internal node visibility maybe poor.
–– What about assertions and functional coverpoints? Will they be emulated?

Expertise: Knowledge FPGA (or not)-based emulation technology. ASIC
RTL mapping to FPGA logic or acceleration hardware, clocks, SCHEMI
interface, compile times, etc. UVM does not cover this.

	12.	 Virtual Platform Methodology

•	 This is the ESL/TLM2.0 methodology. Do you need it? How will you use a
virtual platform as a reference model to check SoC response?

•	 There are significant advantages to this methodology.

–– You will be able to develop software before the RTL is ready.
–– You will be able to create and verify tests before the RTL is ready.
–– The virtual platform can act as a reference model to match the architectural

state of the SoC at transaction boundaries.

Expertise: TLM2.0 SystemC standard language. C++ expertise.

	13.	 AMS (Analog/Mixed Simulation)

•	 What will be the verification strategy to verify analog ⇔ digital boundary
crossing?

•	 How will you generate analog behavioral models? Simulation with Spice
will be extremely slow and won’t be practical.

•	 How will you guarantee analog behavioral model is 100% accurate to Spice
model?

•	 Do you need to deploy real number modeling?
•	 How will you do low-power verification on analog⇔digital boundary?

–– Expertise: Real number modeling (RNM), Verilog-A language, AMS
technology, analog⇔digital interface, analog behavioral modeling
(non-RNM), etc.

2  Functional Verification: Challenges and Solutions

13© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_3

Chapter 3
SystemVerilog Paradigm

Chapter Introduction
This chapter will discuss what is SystemVerilog. Is it a monolithic language? Or is
it an umbrella under which many languages with different syntax and semantics
work with a single simulation kernel? How did SystemVerilog came about?

3.1  �SystemVerilog Language Umbrella

Let us look at the SystemVerilog language and its subcomponents (sublanguages).
Many users consider SystemVerilog as one monolithic language without realizing
that it is a culmination of different languages all working in concert around a com-
mon simulation engine (single unified simulation thread).

As shown in Fig. 3.1, SystemVerilog is not a monolithic language. It has the fol-
lowing components (sublanguages):

	1.	 SystemVerilog Object-Oriented language for functional verification. This is the
subset that transaction-level methodology such as UVM uses.

	2.	 SystemVerilog for Design (knowledge of OOP language subset is not required
here)

	3.	 SystemVerilog Assertions (SVA) language
	4.	 SystemVerilog Functional Coverage (FC) language

Note that SystemVerilog, SystemVerilog Assertions (SVA), and SystemVerilog
Functional Coverage (SFC) are three totally orthogonal languages. In other words,
SVA syntax/semantic is totally different from that of SystemVerilog and
SFC. Similarly, SFC is totally orthogonal to SystemVerilog and SVA, and finally
SystemVerilog for OOP and design is totally different from SVA and SFC.

In any design, there are three main components of verification: (1) stimulus gen-
erators to stimulate the design, (2) response checkers to see that the device adheres
to the device specifications, and (3) coverage components to see that we have indeed

14

structurally and functionally covered everything in the DUT per the device
specifications.

	1.	 Stimulus Generation. This entails creating different ways in which a DUT needs
to be exercised. For example, a peripheral (e.g., USB) may be modeled as a Bus
Functional Model (or a UVM (Universal Verification Methodology) agent) to
drive traffic via SystemVerilog transactions to the DUT. This is where the
SystemVerilog TLM subset comes into play.

	2.	 Response Checking. Now that you have stimulated the DUT, you need to make
sure that the device has responded to that stimulus per the device specs. Here is
where SVA, UVM monitors, scoreboards, reference models, and other such tech-
niques come into picture. SVA will check to see that the design not only meets
high-level specifications but also low-level combinatorial and sequential design
rules.

	3.	 Functional Coverage. How do we know that we have exercised everything that
the device specification dictates? Code coverage is one measure. But code cover-
age is only structural. For example, it will point out if a conditional has been
exercised. But code coverage has no idea if the conditional itself is correct,
which is where functional coverage comes into picture. Functional coverage
gives an objective measure of the design coverage, e.g., have we verified all dif-
ferent cache access transitions (e.g., write followed by read from the same
address) to L2 from CPU? Code coverage will not give such measure.

Fig. 3.1  SystemVerilog language paradigm

3  SystemVerilog Paradigm

15

3.2  �SystemVerilog Language Evolution

Industry recognized the need for a standard language that allowed the design and
verification of a device be built avoiding multi-language cumbersome environ-
ments. Enter Superlog, which was a language with high-level constructs required
for functional verification. Superlog was donated (along with other language dona-
tions) to create SystemVerilog 3.0 from which evolved SystemVerilog 3.1, which
added new features for design. But over 70% of the new language subset was dedi-
cated to functional verification. We can only thank the Superlog inventor (the same
inventor as that for Verilog, namely, Phil Moorby) and the Accelera technical sub-
committees for having a long-term vision to design such a robust all-encompassing
language. No multi-language solutions were required any more. No more reinvent-
ing of the wheel with each project was required anymore. Refer to Fig. 3.2.

VERILOG 95 :: Hardware Concurrency,
Gate/Switch level, Timing (specify

block), basic programming

VERILOG-2001 :: Multi-D arrays, Auto
variables, etc.

SystemVerilog 3.0 :: Interface (access
control and methods), advanced

Verilog, 'C" data types, etc.

SystemVerilog 3.1a ::

Test bench :: Classes with Methods
and Inheritance, constrained random,

etc.

Assertions (SVA) :: Enhanced
semantics for sequential temporal
expressions, property definition.

Functional Coverage :: Advanced
features for cross coverage,

transitions, etc.

Based on :: SystemVerilog 3.0 with
significant enhancements for

testbench, assertions and functional
coverage language enhancements

Based on :: Verilog 95 and original
effort by IEEE technical

subcommittees

Based on :: Gateway Design
Automation's original Verilog.

Based on :: Verilog 2001 and
SuperLog

Fig. 3.2  SystemVerilog evolution

3.2  SystemVerilog Language Evolution

17© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_4

Chapter 4
UVM (Universal Verification Methodology)

Chapter Introduction
This chapter will describe in detail the architecture of UVM, UVM hierarchy, and
discuss each hierarchical component (testbench, test, environment, agent, score-
board, driver, monitor, sequencer, etc.) in detail. We will also go through two com-
plete examples to solidify the concepts.

4.1  �What Is UVM?

Ah, isn’t this now the mother of all verification methodologies? Let us start with
what UVM is and then delve into detail and examples.

UVM is a transaction-level methodology (TLM) designed for testbench develop-
ment. It is a class library that makes it easy to write configurable and reusable code.
You do need to understand the basic concepts of OOP (object-oriented program-
ming), but the designers of UVM did all the hard work. They created the so-called
class library whose components can be used to develop a testbench. You don’t need
to be an OOP expert. Reusable in the sense that once you put together the required
code/infrastructure in place, using UVM class library, you will be able to carry for-
ward that to the next project. Only the driver (in UVM agent), the scoreboard, and
the basic transaction (sequence) and sequence library that contains tests need to
change. With pure SystemVerilog, testbenches are written ad hoc since there is no
coding standard there. These testbenches are then not quite reusable. The code is
also hard to understand and maintain.

UVM is class based and communicates between these classes via transactions.
This helps keep communication interface among class components separate from
the implementation detail in the UVM agent driver. If you don’t understand some of
this, hold on. We’ll go into the UVM hierarchy and examples to solidify the con-
cepts. The UVM class library provides generic utilities, such as component

18

hierarchy, transaction library model (TLM), configuration database, etc., which
enable the users to create virtually any structure they want for the testbench.

UVM provides a set of transaction-level communication interfaces and channels
that you can use to connect components at the transaction level. The use of TLM
interfaces isolates each component from changes in other components throughout
the environment. When coupled with the phased, flexible-build infrastructure in
UVM, TLM promotes reuse by allowing any component to be swapped for another,
as long as they have the same interfaces. In addition, TLM provides the basis for
easily encapsulating components into reusable components, called verification
components, to maximize reuse and minimize the time and effort required to build
a verification environment.

But I am getting carried away here. Let’s see how UVM came to being.
As noted in Fig. 4.1, there were three competing methodologies in the industry.

Open Verification Methodology (OVM) from Mentor, Universal Reuse Methodology
(URM) from Cadence, and Verification Methodology Manual (VMM) from
Synopsys. Each one provided a base class library and TLM level modeling capabili-
ties. Each one claimed to allow you to write reusable code.

The end result was that the customer base was confused on which one to adopt.
That resulted in most people not even adopting any of the methodologies. That in
turn, left almost 70% of SystemVerilog language simply unused, which wasted the
effort of the originators of the language.

After intense debate on unifying all three base class libraries and methodologies,
Accelera came forward and decided to pick OVM and build an industry standard
methodology around it that was “universal.” Most of the features of the language
came from OVM, and thus UVM was born. The users felt confident in adopting this
universal methodology and not get tied to a specific vendor. All vendors now sup-
port this methodology and the standard class library that comes with the tool. And
oh boy, did the user community adopt it. It’s everywhere in all major companies and
with all those who develop large SoCs. It is still to proliferate (as of this writing) to
companies that develop “smaller” less complex chips.

Fig. 4.1  Evolution of UVM

4  UVM (Universal Verification Methodology)

19

Now let us go through a high-level description of the UVM hierarchy and all the
components that lie underneath it. But before that we must understand polymor-
phism since this technology is the bedrock of UVM.

4.2  �Polymorphism

Polymorphism in its simplest form means using one object as an instance of a base
class. For example, if you have the class “Creature” and from that you derive the
class “elephant,” you can treat “elephant” as if it is the instance of class "Creature".

Polymorphism is derived from Greek word, where “poly” means many and
“morph” means forms, i.e., it’s an ability to appear in many forms. [((Modh))]

The OOP (object-oriented programming) term for multiple routines sharing a
common name is “polymorphism.” Polymorphism allows the use of super-class
handle to hold sub-class object and to access the methods of those sub-classes from
the super-class handle itself.

To achieve this, functions and/or tasks in SV are declared as virtual functions/
tasks to allow sub-classes to override the behavior of the function/task. So, we can
say, Polymorphism = Inheritance + virtual method.

Example:

class vehicle; // Parent class
 virtual function vehicle_type(); // Virtual function
 $display("vehicle");
 endfunction

 virtual task color(); // Virtual task
 $display("It has color");
 endtask
endclass

class four_wheeler extends vehicle; //child class
 function vehicle_type();
 $display("It’s a four wheeler");
 endfunction

 task color();
 $display("It has different colors");
 endtask
endclass

class BENZ extends four_wheeler; // "grand" child class
 function vehicle_type();
 $display("It’s a BENZ");
 endfunction

4.2  Polymorphism

20

 task color();
 $display("It is Black");
 endtask
endclass

program polymorphism;// program block
 initial begin
 vehicle vehcl;
 four_wheeler four_whlr;
 BENZ benz;

 four_whlr=new ();
 benz=new ();

 vehcl=four_whlr; // No need to create an object by calling a
new method
 vehcl.vehicle_type(); // accessing child class method by calling
base class method

vehcl=benz;
 vehcl.vehicle_type(); // accessing "grand" child by calling
base class method

 four_whlr=benz;
 four_whlr.color(); // accessing "grand" child method by calling
child class method
 end
endprogram

Output:
It’s a four wheeler.
It’s a BENZ.
It is black.

4.3  �UVM Hierarchy

Figure 4.2 [(Accelera, Universal Verification Methodology (UVM) 1.2 User’s
guide)] shows a simple UVM hierarchy (aka testbench architecture). Following
components make up the hierarchy.

•	 UVM Testbench
•	 UVM Test
•	 UVM Environment

–– The top-level environment contains one or more environments. Each environ-
ment contains an agent for a specific DUT interface. The environment may
contain a scoreboard. A scoreboard compares the outputs with expected outputs.

4  UVM (Universal Verification Methodology)

21

Fig. 4.2  UVM hierarchy (Accelera, Universal Verification Methodology (UVM) 1.2 User’s guide)

Either the expected outputs are computed within a scoreboard or they can use
(via DPI) an external reference model or any other way of comparing simu-
lated output with expected output.

•	 UVM Agent

–– UVM agent comprises of a sequencer, a driver, and/or a monitor.

Let us look at each component at high level.

4.3 � UVM Hierarchy

22

4.3.1  �UVM Testbench

The UVM testbench typically instantiates the design under test (DUT) module and
the UVM Test class and configures the connections between them. If you have
module-based components, they are instantiated under the UVM testbench as well.
As discussed before, TLM interfaces in UVM provide a consistent set of communi-
cation methods for sending and receiving transactions between components. The
components themselves are instantiated and connected in the testbench, to perform
the different operations required to verify a design.

The important point to note is that the UVM Test is dynamically instantiated at
run-time, allowing the UVM testbench to be compiled once and run with many dif-
ferent tests.

4.3.1.1  �UVM Transaction-Level Testbench

As shown in Fig. 4.3, UVM transaction-level testbench instantiates the DUT and the
agent that drives the DUT. The agent comprises of the driver, the sequencer, and the
monitor. An optional scoreboard to analyze data is also instantiated. This testbench
is the most basic, utilizing a UVM agent. The components of this testbench are:

	1.	 Stimulus Generator (sequencer) that creates transaction-level traffic to feed to
the driver.

	2.	 The driver then takes transactions from the sequencer, converts the transactions
into pin signal-level activity, and drives the DUT.

Fig. 4.3  UVM transaction-level testbench

4  UVM (Universal Verification Methodology)

23

	3.	 A monitor that snoops the signal-level activity and converts them back into
transactions that can then be fed to a scoreboard.

	4.	 The scoreboard that gets the monitored transactions from the monitor compares
them with expected transactions (response transactions).

4.3.2  �UVM Test

The UVM Test is the top-level UVM component in the UVM testbench. Note that
in Fig. 4.2, testbench seems to be the top-level component. But testbench merely
instantiates the design under test (DUT) and the UVM Test class and configures the
connection between them. A test is a class that encapsulates test-specific instruc-
tions written by the test writer.

The UVM Test typically:

	1.	 Instantiate the top-level environment.
	2.	 Configure the environment (via factory overrides or the configuration

database).
	3.	 Apply stimulus by invoking UVM sequences through the environment (typically

one per DUT interface) to the DUT.

Tests in UVM are classes that are derived from an uvm_test class. Using classes
allows inheritance and reuse of tests. Typically, a base test class is defined that
instantiates and configures the top-level environment and is then extended to define
scenario-specific configurations such as which sequences to run, coverage parame-
ters, etc. The test instantiates the top-level environment just like any other verifica-
tion component.

Typically, there is one base UVM Test with the UVM environment instantiation
and other common items. Individual tests will extend this base test and configure the
environment differently or select different sequences to run.

4.3.3  �UVM Environment

The UVM environment is a component that groups together other verification com-
ponents that are interrelated. Typical components that are usually instantiated inside
the UVM environment are UVM agents, UVM scoreboards, or even other UVM
environments. The top-level UVM environment encapsulates all the verification
components targeting the DUT.

The top-level environment is a container that defines the reusable component
topology within the UVM Tests. The top-level environment instantiates and config-
ures the reusable verification IP and defines the default configuration of that IP as
required by the application. Multiple tests can instantiate the top-level environment
class and determine the nature of traffic to generate and send for the selected con-
figuration. Additionally, the tests can override the default configuration of the top-
level environment to better achieve their goals.

4.3  UVM Hierarchy

24

As noted above, the top-level UVM environment can instantiate other UVM
environments. Typically for each interface to the DUT, you will find a separate envi-
ronment per interface. For example, PCIe environment, USB environment, etc.
Some of these IP environments can be grouped together into cluster environments
(e.g., an IP interface environment, CPU environment, etc.).

4.3.4  �UVM Agent

The UVM agent is a hierarchical component that groups together other verification
components that are dealing with a specific DUT interface. Agent includes a UVM
sequencer to manage stimulus flow, a UVM driver to apply stimulus to the DUT
interface, and a UVM monitor to monitor the DUT interface. UVM agents might
include other components, like coverage collectors, protocol checkers, and a TLM
model.

To reiterate, the UVM agent is the component that drives the signal-level inter-
face of the DUT. At a minimum, it will have a sequencer and a driver and an optional
monitor (even though, I am not sure what you would do without a monitor to con-
vert the DUT signal-level activity into transactions that can be sent to an analysis
port to a scoreboard for pass/fail determination). The sequences are fed to the
sequencer which then sends these sequences (aka tests or transactions) to the driver.
The driver converts a transaction into signal-level DUT interface detail (e.g., PCIe
interface). This is depicted in Fig. 4.4.

Fig. 4.4  UVM agent

4  UVM (Universal Verification Methodology)

25

Note that the agent can operate in an active mode or a passive mode. In the active
mode, it can generate the stimulus (i.e., the driver drives DUT input and senses DUT
outputs). In the passive mode, the driver and the sequencer remain silent (disabled)
and only the monitor remains active. Monitor simply monitors the outputs of DUT;
it cannot control the IO of the DUT. You can dynamically configure an agent in
either an active mode or a passive mode. Monitor is an unidirectional interface,
while driver is a bidirectional interface. This is depicted in Fig. 4.4.

4.3.5  �UVM Sequence Item

UVM sequence item (i.e., a transaction) is the fundamental lowest denominator
object in the UVM hierarchy. It is the definition of the basic transaction that will
then be used to develop UVM sequences. The sequence item defines the basic trans-
action (e.g., an AXI transaction) data items and/or constrains imposed on them.
While the driver deals with signal activities at the bit level, it doesn’t make sense to
keep this level of abstraction as we move away from the DUT, so the concept of
transaction was created.

UVM sequence items, i.e., transactions are the smallest data transfers that can be
executed in a verification model. They can include variables, constraints, and even
methods for operating on themselves.

Here’s an example of a sequence item:

class lpi_seq_item extends uvm_sequence_item;
 `uvm_object_utils(lpi_seq_item)

 //Data members
 rand bit slp_req0;
 rand bit slp_req1;
 rand bit wakeup_req0;
 rand bit wakeup_req1;
 rand bit ss_wakeup;
 rand bit ss_sleep;

 //UVM Constructor
 function new (string name="lpi_seq_item");
 super.new (name);
 endfunction

 //constraints on data members
 constraint slp_wakeup_reqs {
 (((slp_req0 || slp_req1) && (wakeup_req0 || wakeup_req1))
!= 1); };
endclass: lpi_seq_item

4.3  UVM Hierarchy

26

4.3.6  �UVM Sequence

After a basic uvm_sequence_item has been created, the verification environment
will need to generate sequences using the sequence item to be sent to the sequencer.
Sequences are an ordered collection of transactions (sequence items); they shape
transactions to our needs and generate as many as we want. Since the variables in
the transaction (sequence item) are of type “rand,” if we want to test just a specific
set of addresses in a master-slave communication topology, we could restrict the
randomization to that set of values instead of wasting simulation time in invalid
(or redundant) values.

Sequences are extended from uvm_sequence, and their main job is generating
multiple transactions. After generating those transactions, there is another class that
takes them to the sequencer (discussed next).

For example, using the example of sequence item shown in Sect. 4.3.5, you can
write a sequence as follows.

class lpi_basic_seq extends uvm_sequence #(lpi_seq_item);
 `uvm_object_utils(lpi_basic_seq)

 rand int num_of_trans;

 function new (string name="lpi_basic_seq");
 super.new (name);
 endfunction

 extern task body();
endclass: lpi_basic_seq

task lpi_basic_seq::body();
 lpi_seq_itemseq_item;
 seq_item = lpi_seq_item::type_id::create("seq_item");

 for (int i = 0; i < num_of_trans; i++)
 begin
 `uvm_info(get_type_name(),$psprintf("in seq for count =
%d", i, ,UVM_LOW)

 start_item(seq_item);

 if(!seq_item.randomize())
 begin
 `uvm_error("body","Randomization failed for seq_item")
end

 `uvm_info(get_type_name(),$psprintf("obj is req0 = %d,
req1 = %d, sleep0 = %d, sleep1 = %d", seq_item.wakeup_req0, seq_item.
wakeup_req1, seq_item.slp_req0, seq_item.slp_req1) ,UVM_LOW)

4  UVM (Universal Verification Methodology)

27

 finish_item(seq_item);

end
endtask: body

The explanation of the code is as follows:
lpi_basic_seq is extended from the uvm_sequence which is parameterized with

the lpi_seq_item. We also declare a rand variable num_of_trans.
Then we define the task body which is the gist of the sequence. In the task body(), we

first define a seq_item of type lpi_seq_item which is what the task body will work on.
The “for” loop will iterate for a random number of times (since num_of_trans is

declared “rand”). It will first start_item (start the sequence) which is a call that
blocks until the driver accesses the transaction being created.

Then it checks to see if seq_item can indeed be randomized. If not, it will gener-
ate an error and abort and will print the transaction information and do a finish_item
which is also a blocking call which blocks until the driver has completed the opera-
tion of the current transaction.

Note that, UVM sequences can operate hierarchically with one sequence, called
a parent sequence, invoking another sequence, called a child sequence. To operate,
each UVM sequence is eventually bound to a UVM sequencer. Multiple UVM
sequence instances can be bound to the same UVM sequencer.

4.3.7  �UVM Sequencer

The sequencer controls the flow of request and response sequence items between
sequences and the driver. UVM sequencer is a simple component that serves as an
arbiter for controlling transaction flow from multiple stimulus sequences.

The sequencer and driver use TLM interface to communicate.
uvm_sequencer and uvm_driver base classes have seq_item_export and seq_

item_port defined respectively. The user needs to connect them using TLM connect
method.

Example:

driver.seq_item_port.connect(sequencer.seq_item_export);

Examples shown in Sects. 4.7.4 and 4.8.4 further shed light on a sequencer.

4.3.8  �UVM Driver

Driver is where the TLM transaction-level world meets the DUT signal/clock/ pin-
level world. Driver receives sequences from the sequencer, converts the received
sequences into signal-level activities, and drives them on the DUT interface as per
the interface protocol. Or the driver pulls sequences from the sequencer and sends
them to the signal-level interface. This interaction will be observed and evaluated by

4.3  UVM Hierarchy

28

another block, the monitor, and as a result, the driver’s functionality should only be
limited to send the necessary data to the DUT. Note that nothing prevents the Driver
from monitoring the transmitted/received data from DUT—but that violates the
rules of modularity. Also, if you embed the monitor in the driver, you can’t turn the
monitor ON/OFF.

The driver has a TLM port to receive transactions from the sequencer and access
to the DUT interface to drive the DUT signals.

Driver is written by extending uvm_driver.
uvm_driver is inherited from uvm_component; Methods and TLM port (seq_

item_port) are defined for communication between sequencer and driver.
The uvm_driver is a parameterized class; and it is parameterized with the type of

the request sequence_item and the type of the response sequence_item.
The UVM driver is discussed in detail with the UVM example discussed in Sect.

4.7.2.

4.3.8.1  �uvm_driver Methods

get_next_item

This method blocks until a REQ sequence_item is available in the sequencer.

try_next_item

This is a non-blocking variant of the get_next_item () method. It will return a
null pointer if there is no REQ sequence_item available in the sequencer.

item_done

The non-blocking item_done () method completes the driver–sequencer hand-
shake, and it should be called after a get_next_item () or a successful try_next_item
() call.

put

The put () method is non-blocking and is used to place a RSP sequence_item in
the sequencer.

Examples shown in Sects. 4.7.2 and 4.8.5 further shed light on a driver.

4.3.9  �UVM Monitor

Monitor, in a sense, is reverse of the driver. It takes the DUT signal/pin-level activi-
ties and converts them back into transactions to be sent out to the rest of the UVM
testbench (e.g., to the scoreboard) for analysis. Monitor broadcasts the created trans-
actions through its analysis port. Note that comparing of the received output from the
DUT to that with expected output is normally done in the scoreboard and not directly
in the monitor (even though there is nothing that prevents that from happening).

4  UVM (Universal Verification Methodology)

29

The reason is to preserve modularity of the testbench. Monitor, as the name suggests,
monitors the DUT signals and coverts them to transactions. That’s it. It’s the job of
the scoreboard (or any other component for that matter) to receive the broadcasted
transaction from the Driver and do the comparison with the expected outputs.

The UVM monitor can perform internally some processing on the transactions
produced (such as coverage collection, checking, logging, recording, etc.) or can
delegate that to dedicated components connected to the monitor’s analysis port.

Example shown in Sects. 4.7.5 and 4.8.6 provide examples on building a UVM
monitor.

4.3.10  �UVM Scoreboard

The scoreboard simply means that it is a checker (not to be confused with
SystemVerilog SVA “checker”). It checks the response of the DUT against expected
response. The UVM scoreboard usually receives transactions from the monitor
through UVM agent analysis ports and the transactions through a reference model
to produce expected transactions and then compares the expected output versus the
received transaction from the monitor.

There are many ways to implement a scoreboard. For example, if you are using
a reference model, you may use SystemVerilog–DPI API to communicate with the
scoreboard, pass transactions via DPI to the reference model, convert reference
model response into transactions, and compare the DUT output transaction with the
one provided by the reference model. Reference model can be a C/C++ model or a
TLM2.0 SystemC model or simply another SystemVerilog model.

4.4  �UVM Class Library

Figure 4.5 [(Accelera, Universal Verification Methodology (UVM) 1.2 User’s
guide)] shows the building blocks of UVM class library that you can use to quickly
build well constructed, reusable, configurable components and testbenches. The
library contains base classes, utilities, and macros.

The advantages of using the UVM class library [(Accelera, Universal Verification
Methodology (UVM) 1.2 User’s guide)] include:

	(a)	 A robust set of built-in features—The UVM class library provides many fea-
tures that are required for verification, including complete implementation of
printing, copying, test phases, factory methods, and more.

	(b)	 Correctly implemented UVM concepts—Each component can be derived from
a corresponding UVM class library component. Using these base class ele-
ments increase the readability of your code since each component’s role is pre-
determined by its parent class.

4.4 � UVM Class Library

30

The UVM class library also provides various utilities to simplify the develop-
ment and use of verification environments. These utilities support configurability by
providing a standard resource sharing database.

They support debugging by providing a user–controllable messaging utility for
failure reporting and general reporting purposes. They support testbench construc-
tion by providing a standard communication infrastructure between verification
components (TLM) and flexible verification environment construction (UVM fac-
tory). Finally, they also provide macros for allowing more compact coding styles.

4.5  �UVM Transaction-Level Communication Protocol: Basics

4.5.1  �Basic Transaction-Level Communication

The fundamental transaction-level interfaces have the concept of a “port” and an
“export.” A TLM “port” defines a set of methods (aka the Application Programming
Interface—API) to be used for a connection. A TLM “export” implements these
methods. Connecting a “port” to an “export” allows the implementation to be exe-
cuted when the “port” method is called.

Figure 4.6 shows an example of a single producer connected to a single consumer.

Fig. 4.5  UVM class library hierarchy (Accelera, Universal Verification Methodology (UVM) 1.2
User’s guide)

4  UVM (Universal Verification Methodology)

31

The square on the producer block is called a “port,” and the circle on the con-
sumer block is called an “export.” The producer sends out transactions and method
calls (e.g., the method “put” in the following example) on its “port” (or per the
language semantics, “put_port”).

Here’s sample code for a producer (Accelera, UVM 1.2 User’s Guide, 2015):

class producer extends uvm_component;
uvm_blocking_put_port #(my_trans) put_port; // 1 parameter
 function new (string name, uvm_component parent);
 put_port = new (“put_port”, this);
 ...
 endfunction

 virtual task run();
 my_trans myT;
 for (int i = 0; i < N; i++) begin
 // Generate myT.
 put_port.put (myT);
 end
 endtask
endclass

The uvm_blocking_put_port simply means that the producer will block until the
consumer’s “put” implementation is complete. As you can see, the producer sends
the transaction through its put_port with “put” method. This “put” method is pro-
vided as part of the uvm_blocking_put_port class. The “put” method is implemented
by the consumer. The semantics of the put operation are defined by TLM. In this
case, the put() call in the producer will block until the consumer’s put implementa-
tion is complete. Other than that, the operation of producer is completely indepen-
dent of the put implementation (uvm_blocking_put_imp). The modularity provided
by TLM fosters an environment in which components may be easily reused since
the interfaces are well defined.

Here’s an implementation of the consumer.

class consumer extends uvm_component;
uvm_blocking_put_imp #(my_trans, consumer) put_export; // 2
parameters
...
 task put (my_trans t);
 case(t.kind)

Fig. 4.6  UVM producer
port to consumer export

4.5 � UVM Transaction-Level Communication Protocol: Basics

32

 BURST_READ: // Do burst read.
 BURST_WRITE: // Do burst write.
 endcase
 endtask
endclass

To reiterate, whenever the producer invokes the “put” method, the consumer’s
implementation (task put) will be executed.

Converse of “put” is “get” (Fig. 4.7). In other words, here the consumer gets a
transaction from the producer. The consumer requests transactions from the pro-
ducer via its “get” port. Note that now the “square box” (i.e., the port) is on the
Consumer and the circle (i.e., the export) is on the producer side. This means that
consumer calls the “get” method which is implemented by the producer.

Here’s a simple example (Accelera, Universal Verification Methodology (UVM)
1.2 User’s guide).

class get_consumer extends uvm_component;
 uvm_blocking_get_port #(my_trans) get_port;
 function new (string name, uvm_component parent);
 get_port = new (“get_port”, this);
 ...
 endfunction

 virtual task run();
 my_trans myT;
 for (int i = 0; i < N; i++) begin
 // Generate t.
 get_port.get(myT);
 end
 endtask
endclass

As with put (), the get_consumer’s get() call will block until the get_producer’s
method completes. In TLM terms, put () and get() are blocking methods.

class get_producer extends uvm_component;
uvm_blocking_get_imp #(my_trans, get_producer) get_export;
...
 task get(output my_trans t);

Fig. 4.7  Producer export
to consumer port

4  UVM (Universal Verification Methodology)

33

 simple_trans tmp = new();
 // Assign values to tmp.
 t = tmp;
 endtask
endclass

Note: In both these examples, there is a single process running, with control
passing from the port to the export and back again. The direction of data flow (from
producer to consumer) is the same in both examples.

But what if you want the producer and the consumer to operate independently?
In the example above, the consumer will be active only when its put () method is
called by the producer. UVM provides the uvm_tlm_fifo channel to facilitate such
communication. The uvm_tlm_fifo implements all the TLM interface methods, so
the producer puts the transaction into the uvm_tlm_fifo, while the consumer inde-
pendently gets the transaction from the FIFO, as shown in Fig. 4.8.

When the producer puts a transaction into the FIFO, it will block if the FIFO is
full; otherwise, it will put the object into the FIFO and return immediately. The get
operation will return immediately if a transaction is available (and will then be
removed from the FIFO); otherwise, it will block until a transaction is available.
Thus, two consecutive get() calls will yield different transactions to the consumer.
The related peek() method returns a copy of the available transaction without remov-
ing it. Two consecutive peek() calls will return copies of the same transaction.

4.5.2  �Hierarchical Connections

Ok, let us take the above examples a bit further. What if you want to make connec-
tions across hierarchical boundaries? Let us consider the hierarchical design shown
in Fig. 4.9.

Fig. 4.8  Producer to
consumer via TLM FIFO

Fig. 4.9  Stimulus to driver hierarchical connection

4.5  UVM Transaction-Level Communication Protocol: Basics

34

Here again you have the producer and the consumer. But there is a hierarchy
under each of these components. The idea is to transfer a “stim” transaction (stimu-
lus transaction) to the eventual “drv” (driver) component.

The producer contains “stim,” “fifo,” and “conv,” while the consumer contains
“fifo” and “drv”.

Note that just as we saw in previous examples, the producer has a put_port (i.e.,
the port puts a transaction) and the consumer has a put_export (i.e., it implements
the method called by the producer).

Connections C and E are of a different sort than what have seen so far. Connection
C is a port-to-port connection, and connection E is an export-to-export connection.
These two kinds of connections are necessary to complete hierarchical connections.
Connection C imports a port from the outer component to the inner component.
Connection E exports an export upwards in the hierarchy from the inner component
to the outer one. Ultimately, every transaction-level connection must resolve so that
a port is connected to an export. However, the port and export terminals do not need
to be at the same place in the hierarchy. We use port-to-port and export-to-export
connections to bring connectors to a hierarchical boundary to be accessed at the
next higher level of hierarchy.

4.5.3  �Analysis Ports and Exports

Ok so far, we have seen “port” and “export.” Let us look at a third type of interface
called “analysis_port.” This port is represented as a diamond (Fig. 4.10). As we
discussed above, the key distinction between the two types of TLM communication
is that the put/get ports typically require a corresponding export to supply the imple-
mentation. For analysis, however, the emphasis is on a particular component, such
as a monitor, being able to produce a stream of transactions, regardless of whether
there is a target actually connected to it. Modular analysis components are then con-
nected to the analysis_port, each of which processes the transaction stream in a
particular way.

Let us look at the analysis port and export separately.

Fig. 4.10  Analysis port

4  UVM (Universal Verification Methodology)

35

In UVM semantics, the analysis port is called “uvm_analysis_port.” It’s a
specialized TLM port whose interface consists of a single function called “write ().”
The analysis port contains a list of analysis_exports that are connected to it. Refer
to Fig. 4.10. When the component calls analysis_port.write(), the analysis_port
cycles through the list of connected exports and calls the write() method of each
connected export. If nothing is connected, the write() call simply returns. Thus, an
analysis port may be connected to zero or many analysis exports, but the operation
of the component that writes to the analysis port does not depend on the number of
exports connected. Because write() is a void function, the call will always complete
in the same delta cycle, regardless of how many components (for example, score-
boards, coverage collectors, and so on) are connected.

Components to which export is connected implement the write() function. If
multiple exports are connected to an analysis port, the port will call the write() of
each export, in order. Since all implementations of write() must be functions, the
analysis port’s write() function completes immediately, regardless of how many
exports are connected to it. When multiple subscribers are connected to an analy-
sis_port, each is passed a pointer to the same transaction object, the argument to the
write() call. Each write() implementation must make a local copy of the transaction
and then operate on the copy to avoid corrupting the transaction contents for any
other subscriber that may have received the same pointer. UVM also includes an
analysis_fifo, which is a uvm_tlm_fifo that also includes an analysis export, to
allow blocking components access to the analysis transaction stream. The analysis_
fifo is unbounded, so the monitor’s write() call is guaranteed to succeed immedi-
ately. The analysis component may then get the transactions from the analysis_fifo
whenever it pleases.

4.6  �UVM Phases

As shown in Fig. 4.11, following phases make up the UVM Phases. Each phase is
described below. Basically, there are three phases overall. The build phase builds
top-level testbench topology and the connect phase connects environment topology.
The run phase does exactly what the name suggests, namely, run the test! All phases
“under” the run umbrella run in zero time, except of course the run() phase. And
finally, the cleanup phase gathers details on the final DUT state, processes the simu-
lation results, and does simulation results analysis and reporting.

The following provides at finer granularity the phases at play in UVM.

4.6.1  �Build Phases

The build phases are executed at the start of the UVM testbench simulation, and
their overall purpose is to construct, configure, and connect the testbench compo-
nent hierarchy [(MentorGraphics)].

4.6 � UVM Phases

36

All the build phase methods are functions and therefore execute in zero simula-
tion time.

4.6.1.1  �Build

Once the UVM testbench root node component is constructed, the build phase starts
to execute. It constructs the testbench component hierarchy from the top of the hier-
archy downwards. The construction of each component is deferred so that each
layer in the component hierarchy can be configured by the level above. During the
build phase, uvm_components are indirectly constructed using the UVM factory.

4.6.1.2  �Connect

The connect phase is used to make TLM connections between components or to
assign handles to testbench resources. It must occur after the build method has put
the testbench component hierarchy in place and works from the bottom of the hier-
archy upwards.

Fig. 4.11  UVM phases (MentorGraphics)

4  UVM (Universal Verification Methodology)

37

4.6.1.3  �end_of_elaboration

The end_of_elaboration phase is used to make any final adjustments to the struc-
ture, configuration, or connectivity of the testbench before simulation starts. Its
implementation can assume that the testbench component hierarchy and intercon-
nectivity is in place. This phase executes bottom up.

4.6.2  �Run-Time Phases

The testbench stimulus is generated and executed during the run-time phases which
follow the build phases. After the start_of_simulation phase, the UVM executes the
run phase and the phases pre_reset through to post_shutdown in parallel. The run
phase was present in the OVM and is preserved to allow OVM components to be
easily migrated to the UVM. The other phases were added to UVM to give finer
run-time phase granularity for tests, scoreboards, and other similar components. It
is expected that most testbenches will only use reset, configure, main, and shutdown
and not their pre- and post variants.

4.6.2.1  �start_of_simulation

The start_of_simulation phase is a function which occurs before the time-
consuming part of the testbench begins. It is intended to be used for displaying
banners, testbench topology, or configuration information. It is called in bottom-up
order.

4.6.2.2  �Run

The run phase occurs after the start_of_simulation phase and is used for the stimu-
lus generation and checking activities of the testbench. The run phase is imple-
mented as a task, and all uvm_component run tasks are executed in parallel.
Transactors such as drivers and monitors will nearly always use this phase.

4.6.2.3  �pre_reset

The pre_reset phase starts at the same time as the run phase. Its purpose is to take
care of any activity that should occur before reset, such as waiting for a power-good
signal to go active. I do not anticipate much use for this phase.

4.6 � UVM Phases

38

4.6.2.4  �Reset

The reset phase is reserved for DUT or interface-specific reset behavior. For
example, this phase would be used to generate a reset and to put an interface into
its default state.

4.6.2.5  �post_reset

The post_reset phase is intended for any activity required immediately following
reset. This might include training or rate negotiation behavior. I do not anticipate
much use for this phase.

4.6.2.6  �pre_configure

The pre_configure phase is intended for anything that is required to prepare for the
DUT’s configuration process after reset is completed, such as waiting for compo-
nents (e.g., drivers) required for configuration to complete training and/or rate nego-
tiation. It may also be used as a last chance to modify the information described by
the test/environment to be uploaded to the DUT. I do not anticipate much use for
this phase.

4.6.2.7  �Configure

The configure phase is used to program the DUT and any memories in the testbench
so that it is ready for the start of the test case. It can also be used to set signals to a
state ready for the test case start.

4.6.2.8  �post_configure

The post_configure phase is used to wait for the effects of configuration to propa-
gate through the DUT or for it to reach a state where it is ready to start the main test
stimulus. I do not anticipate much use for this phase.

4.6.2.9  �pre_main

The pre_main phase is used to ensure that all required components are ready to start
generating stimulus. I do not anticipate much use for this phase.

4  UVM (Universal Verification Methodology)

39

4.6.2.10  �Main

This is where the stimulus specified by the test case is generated and applied to the
DUT. It completes when either all stimulus is exhausted or a time-out occurs. Most
data throughput will be handled by sequences started in this phase.

4.6.2.11  �post_main

This phase is used to take care of any finalization of the main phase. I do not antici-
pate much use for this phase.

4.6.2.12  �pre_shutdown

This phase is a buffer for any DUT stimulus that needs to take place before the
shutdown phase. I do not anticipate much use for this phase.

4.6.2.13  �Shutdown

The shutdown phase is used to ensure that the effects of stimulus generated during
the main phase have propagated through the DUT and that any resultant data has
drained away.

4.6.2.14  �post_shutdown

Perform any final activities before exiting the active simulation phases. At the end
of the post_shutdown phase, the UVM testbench execution process starts the
cleanup phases. I do not anticipate much use for this phase.

4.6.3  �Cleanup Phases

The cleanup phases are used to extract information from scoreboards and functional
coverage monitors to determine whether the test case has passed and/or reached its
coverage goals [(MentorGraphics)]. The cleanup phases are implemented as func-
tions and therefore take zero time to execute. They work from the bottom upwards
in the component hierarchy.

4.6  UVM Phases

40

4.6.3.1  �Extract

The extract phase is used to retrieve and process information from scoreboards and
functional coverage monitors. This may include the calculation of statistical informa-
tion used by the report phase. This phase is usually used by analysis components.

4.6.3.2  �Check

The check phase is used to check that the DUT behaved correctly and to identify any
errors that may have occurred during the execution of the testbench. This phase is
usually used by analysis components.

4.6.3.3  �Report

The report phase is used to display the results of the simulation or to write the
results to file. This phase is usually used by analysis components.

4.6.3.4  �Final

The final phase is used to complete any other outstanding actions that the testbench
has not already completed.

Here’s a very simple example of a basic uvm_component showing different
UVM phases.

class generic_component extends uvm_component;
 `uvm_component_utils(generic_component)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction: new

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);

 //Code for constructors goes here
 endfunction: build_phase

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);

 //Code for connecting components goes here
 endfunction: connect_phase

4  UVM (Universal Verification Methodology)

41

 task run_phase(uvm_phase phase);
 //Code for simulation goes here
 endtask: run_phase

 function void report_phase(uvm_phase phase);
 //Code for showing simulation results goes here
 endfunction: report_phase

endclass: generic_component

4.7  �UVM Example: One

We now present a UVM example, which describes building sequence_item,
sequence, UVM agent, UVM sequencer, UVM driver, etc.

4.7.1  �Modeling a Sequence Item

A sequence item is essentially a transaction upon (using) which sequences can be
built. So, they are transaction objects used as stimulus to the DUT. The UVM class
library provides the uvm_sequence_item base class. Every user-defined sequence
item should be derived directly or indirectly from this base class.

UVM has built-in automation for many service routines that a data item needs.
For example, you can use:

–– Print() to print a data item
–– Copy() to copy the contents of a data item
–– Compare() to compare two similar objects

UVM allows you to use a built-in, mature, and consistent implementation of
these routines.

Here’s an example.

class bus_seq_item extends uvm_sequence_item;

// Request data properties are rand
rand logic [31:0] addr;
rand logic [31:0] write_data;
rand bit read_not_write;
rand int delay;

// Response data properties are NOT rand
bit error;
logic [31:0] read_data;

4.7 � UVM Example: One

42

//Factory registration
`uvm_object_utils(bus_seq_item)

 function new (string name = "bus_seq_item");
 super.new (name);
 endfunction

// Delay between bus cycles is constrained
constraint at_least_1 {delay inside {[1:20]};}
// 32 bit aligned transfers
constraint align_32 {addr[1:0] == 0;}

endclass bus_seq_item

General rules of thumb for creating a sequence_item:
Review your DUT interface properties and functionality, and add those as vari-

ables in the class where you define your sequence_item. In the example above,
bus_seq_item creates a sequence_item for a simple Read/Write interface. It defines,
addr, write_data, read_data, read_not_write, delay, and error fields. This is the user
defined sequence_item derived from uvm_sequence_item. You also notice that for
the stimulus fields, you may “rand” the fields to drive constraint random stimulus.
Note that the outputs from the DUT (i.e., the response fields) are not “rand” (that
wouldn’t make sense, would it?). Note the two constraints that are also part of the
class bus_seq_item. Hence, whenever stimulus is driven to the DUT, it will be con-
strained within the limits specified.

4.7.1.1  �Inheritance and Constraint Layering

Continuing with the above example, you may want to adjust the sequence item gen-
eration by adding more constraints to the bus_seq_item class definition. In
SystemVerilog, this is done using inheritance. The following example shows how
you can extend the class bus_seq_item and constrain write_data.

class write_data_constraint extends bus_seq_item;

constraint write_constraint {write_data[3:0] == 4'b0000; }
`uvm_object_utils(write_data_constraint)

// Constructor
 function new (string name = "write_data_constraint");
 super.new (name);
 endfunction: new

endclass

4  UVM (Universal Verification Methodology)

43

4.7.2  �Building UVM Driver

4.7.2.1  �Driver Basics

Driver is the main signal-level interface to the DUT. It drives data items per a spe-
cific interface protocol (e.g., PCIe) and drives and senses the interface. It gets its
instructions, i.e., the transactions from the sequencer which it then converts to
protocol-specific signal-level activity. The UVM class library provides the uvm_
driver base class, from which all driver classes should be extended, either directly or
indirectly. The driver has a TLM port through which it communicates with the
sequencer.

Note that you cannot drive the DUT signals directly from the SystemVerilog
class-based environment (i.e., class-based code). You need to declare a virtual inter-
face in the driver to connect to the DUT.

4.7.2.2  �Driver Example

//By default - response and request type are assumed same if not
provided
class simple_driver extends uvm_driver #(simple_item, simple_rsp);

simple_item s_item;
virtual dut_if vif;

// UVM automation macros for general components
`uvm_component_utils(simple_driver)

// Constructor
function new (string name = "simple_driver", uvm_component parent);
 super.new (name, parent);
endfunction: new

//BUILD Phase
function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 if(!uvm_config_db#(virtual dut_if)::get(this,"","vif",vif))
begin
 `uvm_fatal("NOVIF", {"virtual interface must be set
for: ", get_full_name(),".vif"});
 end
endfunction: build_phase

//RUN Phase
task run_phase(uvm_phase phase);
 forever begin

4.7 � UVM Example: One

44

 // Get the next data item from sequencer (may block).
 seq_item_port.get_next_item(s_item);
 fork begin
 // Execute the item.
 drive_and_respond(s_item);
 end
 join_none
 seq_item_port.item_done(); // Consume the request.
 end
endtask: run

task drive_and_respond (input simple_item item);
 // Add your logic here.
endtask: drive_and_respond

endclass: simple_driver

4.7.3  �Basic Sequencer and Driver Interaction

Figure 4.12 shows a simple diagram depicting interaction between a driver and a
sequencer.

In this example, we are creating a simple_driver from the base class uvm_driver.
In addition, we show a basic way for driver to interact with the sequencer. That is
done using the tasks get_next_item() and item_done(). As demonstrated in the
above example, the driver uses get_next_item() to fetch the next randomized item to
be sent to the DUT. After sending it to the DUT, the driver signals the sequencer that

Fig. 4.12  Sequencer
driver connection

4  UVM (Universal Verification Methodology)

45

the item was processed using item_done(). Note that get_next_item() is blocking
until an item is provided by the sequencer.

In addition to the get_next_item() task, the uvm_seq_item_pull_port class pro-
vides another task, try_next_item(). This task will return in the same simulation step
if no data items are available for execution. You can use this task to have the driver
execute some idle transactions, such as when the DUT has to be stimulated when
there are no meaningful data to transmit. The following example shows a revised
implementation of the run_phase() task. This time using try_next_item() to drive
idle transactions as long as there is no real data item to execute:

task run_phase(uvm_phase phase);

 forever
 begin
 // Try the next data item from sequencer (does not block).
 seq_item_port.try_next_item(s_item);
 if (s_item == null)
 begin
 // No data item to execute, send an idle transaction.
 ...
 end

 else
 begin
 // Got a valid item from the sequencer, execute it.
 ...
 // Signal the sequencer; we are done.
 seq_item_port.item_done();
 end
 end
endtask: run

In some protocols, such as pipelined protocols, the driver may operate on several
transactions at the same time. The sequencer–driver connection, however, is a single
item handshake which shall be completed before the next item is retrieved from the
sequencer. In such a scenario, the driver can complete the handshake by calling
item_done() without a response and provide the response by a subsequent call to
put_response() with the real response data.

In some sequences, a generated value depends on the response to previously gen-
erated data. By default, the data items between the driver and the sequencer are
copied by reference, which means that the changes the driver makes to the data item
will be visible inside the sequencer. In cases where the data item between the driver
and the sequencer is copied by value, the driver needs to return the processed response
back to the sequencer. Do this using the optional argument to item_done(),

4.7  UVM Example: One

46

seq_item_port.item_done(rsp);
or using the put_response() method,

seq_item_port.put_response(rsp);
or using the built-in analysis port in uvm_driver.

rsp_port.write(rsp);

Note: Before providing the response, the response’s sequence and transaction id
must be set to correspond to the request transaction using rsp.set_id_info(req).

Note: put_response() is a blocking method, so the sequencer must do a correspond-
ing get_response(rsp).

4.7.4  �Building UVM Sequencer

As noted previously, the sequencer controls the flow of request and response
sequence items between sequences and the driver. UVM sequencer is a simple com-
ponent that serves as an arbiter for controlling transaction flow from multiple stimu-
lus sequences.

Sequences are extended from uvm_sequence, and their main job is generating
multiple transactions. After generating those transactions, there is another class that
takes them to the driver: the sequencer. The code for the sequencer is usually very
simple and in simple environments, the default class from UVM is enough to cover
most of the cases.

class simple_sequencer extends uvm_sequencer #(simple_item, simple_rsp);

`uvm_component_utils(simple_sequencer);

 function new (input string name, uvm_component parent=null)'
 super.new (name, parent);
 endfunction

endclass: simple_sequencer

4.7.5  �Building UVM Monitor

class simple_monitor extends uvm_monitor;
 `uvm_component_utils(simple_monitor)

 //Interface
 virtual monitor_if monitor_vif;

 //Constructor

4  UVM (Universal Verification Methodology)

47

 function new (string name="simple_monitor", uvm_component
parent=null);
 super.new (name, parent);
 endfunction

 function void build_phase (uvm_phase phase);
 endfunction: build_phase

function void connect_phase (uvm_phase phase);
endfunction: connect_phase

extern task run_phase (uvm_phase phase);
endclass: simple_monitor

task simple_monitor::run_phase(uvm_phase phase);
//your code here
endtask: run_phase
endclass: simple_monitor

4.7.6  �UVM Agent: Connecting Driver, Sequencer, and Monitor

class simple_agent extends uvm_agent;

uvm_active_passive_enum is_active;

simple_sequencer sequencer;
simple_driver driver;
simple_monitor monitor;

// Use build() phase to create agents’ subcomponents.
virtual function void build_phase (uvm_phase phase);
 super.build_phase(phase)
 monitor = simple_monitor::type_id::create("monitor”, this);

 if (is_active == UVM_ACTIVE) begin
 // Build the sequencer and driver.
	 sequencer = simple_sequencer::type_id::create
("sequencer”, this);
	 driver = simple_driver::type_id::create("driver”,
this);
end
endfunction: build_phase

4.7  UVM Example: One

48

//Use connect phase to connect components together

virtual function void connect_phase (uvm_phase phase);
 if (is_active == UVM_ACTIVE) begin
	 driver.seq_item_port.connect(sequencer.
seq_item_export);
 end
endfunction: connect_phase
endclass: simple_agent

In this example, we declare the driver, monitor, and sequencer. We then “create”
the monitor and sequencer using create(). The “if” condition tests the is_active
property to determine whether the driver and the sequencer are created in this agent.
Since we have (is_active == UVM_ACTIVE), we indeed create the driver and the
sequencer using the create() call. Note that the create() call should always be called
from the build_phase() method to create any multi-hierarchical component. We
again check for the is_active flag and if it is indeed active, then only we connect the
driver and the sequencer using the .connect() method.

4.7.7  �Building the Environment

A typical UVM environment is shown in Fig. 4.13.

Fig. 4.13  UVM environment

4  UVM (Universal Verification Methodology)

49

The environment class is the top container of reusable components. It instantiates
and configures all of its subcomponents. Most verification reuse occurs at the envi-
ronment level where the user instantiates an environment class and configures it and
its agents for specific verification tasks. For example, a user might need to change
the number of masters and slaves in a new environment as shown below (Accelera,
Universal Verification Methodology (UVM) 1.2 User’s guide).

class ahb_env extends uvm_env;
int num_masters;
ahb_M_agent masters[];

`uvm_component_utils_begin(ahb_env)
`uvm_field_int(num_masters, UVM_ALL_ON)
`uvm_component_utils_end

virtual function void build_phase(phase);
 string inst_name;
 super.build_phase(phase);
 if (num_masters ==0))
 `uvm_fatal("NONUM",{"'num_masters' must be set"};
 masters = new[num_masters];
 for (int i = 0; i < num_masters; i++) begin
 $sformat(inst_name, "masters[%0d]", i);
	 masters[i] = ahb_M_agent::type_id::create(inst_
name,this);
 end
 // Build slaves and other components.
endfunction
function new (string name, uvm_component parent);
 super.new (name, parent);
endfunction : new
endclass

A complete example of an environment is presented in Sect. 4.8.12

4.7.8  �UVM Top-Level Module (Testbench) Example

The top_tb example below has added an SPI (Serial Peripheral Interface) and intr_if
(Interrupt Interface) which is not shown in any of the diagrams above. This top_tb
example assumes three interfaces, namely, spi_if, apb_if, and intr_if which are typi-
cal peripheral interfaces of an SoC.

4.7  UVM Example: One

50

module top_tb;

import uvm_pkg::*;
import spi_test_lib_pkg::*;
// PCLK and PRESETn
logic PCLK;
logic PRESETn;

// Instantiate the interfaces:

 apb_if APB(PCLK, PRESETn); // APB interface
 spi_if SPI(); // SPI Interface
 intr_if INTR(); // Interrupt

//Instantiate DUT
 spi_top DUT(
 // APB Interface:
 .PCLK(PCLK),
 .PRESETN(PRESETn),
 .PSEL(APB.PSEL[0]),
 .PADDR(APB.PADDR[4:0]),
 .PWDATA(APB.PWDATA),
 .PRDATA(APB.PRDATA),
 .PENABLE(APB.PENABLE),
 .PREADY(APB.PREADY),
 .PSLVERR(),
 .PWRITE(APB.PWRITE),

 // Interrupt output
 .IRQ(INTR.IRQ),

 // SPI signals
 .ss_pad_o(SPI.cs),
 .sclk_pad_o(SPI.clk),
 .mosi_pad_o(SPI.mosi),
 .miso_pad_i(SPI.miso)
);

// UVM initial block:
// Virtual interface wrapping & run_test()
initial begin
 uvm_config_db #(virtual apb_if)::set(null , "uvm_test_top" ,
"APB_vif" , APB);

4  UVM (Universal Verification Methodology)

51

 uvm_config_db #(virtual spi_if)::set(null , "uvm_test_top"
, "SPI_vif" , SPI);
 uvm_config_db #(virtual intr_if)::set(null , "uvm_test_
top" , "INTR_vif", INTR);
 run_test();
end
// Clock and reset initial block:
//
initial begin
 PCLK = 0;
 PRESETn = 0;
 repeat(8) begin
 #10ns PCLK = ~PCLK;
end
PRESETn = 1;
forever begin
 #10ns PCLK = ~PCLK;
end
endmodule: top_tb

Another example of a Testbench is provided in Sect. 4.8.13

4.8  �UVM Example: Two

This is a complete example of a low power interface block. This example will guide
you to create your own simple UVM testbench, test, environment, agent, sequencer,
driver, and monitor. The code is self-explanatory with embedded comments.

4.8.1  �DUT: lpi.sv

module lpi(
 input wire clk,
 input wire rst_n,
 input wire slp_req0,
 input wire slp_req1,
 input wire wakeup_req0,
 input wire wakeup_req1,
 output wire ss_wakeup,
 output wire ss_sleep
);
localparam

4.8 � UVM Example: Two

52

 S_IDLE = 4'h1,
 S_ON = 4'h2,
 S_SLEEP = 4'h4,
 S_UP = 4'h8;

reg [3:0]sm, nxt_sm;
wire wakeup = wakeup_req0 | wakeup_req1;
wire sleep =slp_req0 &slp_req1;
always @(posedge clk or negedge rst_n) begin
 if (!rst_n) begin
 sm <= #1 S_IDLE;
end
else
 sm <= #1 nxt_sm;
end
always @* begin
 case(sm)
 S_IDLE : nxt_sm= wakeup ? S_ON: S_IDLE;
 S_ON : nxt_sm= sleep ? S_SLEEP: S_ON;
 S_SLEEP: nxt_sm= wakeup ? S_ON : S_SLEEP;
 endcase // case (sm)
end

assign ss_wake = (nxt_sm == S_ON) ? 1'b1 : 1'b0;
assign ss_slp = (nxt_sm == S_SLEEP) ? 1'b1 : 1'b0;

endmodule // lpi

4.8.2  �lpi_if.sv

interface lpi_if(input bit lpi_clk, lpi_rstn);

 //bit is_active;
 logic slp_req0;
 logic slp_req1;
 logic wakeup_req0;
 logic wakeup_req1;
 logic ss_wake;
 logic ss_sleep;

endinterface: lpi_if

4  UVM (Universal Verification Methodology)

53

4.8.3  �lpi_seq_item.sv

class lpi_seq_item extends uvm_sequence_item;
 `uvm_object_utils(lpi_seq_item)

 //Data members
 rand bit slp_req0;
 rand bit slp_req1;
 rand bit wakeup_req0;
 rand bit wakeup_req1;
 rand bit ss_wakeup;
 rand bit ss_sleep;

 //UVM methods
 function new (string name="lpi_seq_item");
 super.new (name);
 endfunction

 constraint slp_wakeup_reqs {
 (((slp_req0 || slp_req1) && (wakeup_req0 ||
wakeup_req1)) != 1); };
endclass: lpi_seq_item

4.8.4  �lpi_sequencer.sv

class lpi_sequencer extends uvm_sequencer#(lpi_seq_item);
 `uvm_sequencer_utils(lpi_sequencer)

 function new (string name="lpi_sequencer", uvm_component par-
ent = null);
 super.new (name, parent);
 `uvm_update_sequence_lib
 endfunction

endclass: lpi_sequencer

4.8.5  �lpi_driver.sv

class lpi_driver extends uvm_driver#(lpi_seq_item);
 `uvm_component_utils(lpi_driver)

4.8 � UVM Example: Two

54

 //Virtual interface
 virtual lpi_iflpi_vif;
 lpi_seq_item seq_item;

 function new (string name="lpi_driver", uvm_component parent=null);
 super.new (name, parent);
 endfunction

 task run_phase(uvm_phase phase);

 // Initialize all interface values asynchronously at the start
of run_phase
 lpi_vif.slp_req0 <= 0;
 lpi_vif.slp_req1 <= 0;
 lpi_vif.wakeup_req0<= 0;
 lpi_vif.wakeup_req1<= 0;
forever
 begin
 seq_item_port.get_next_item(seq_item);
 `uvm_info(get_name(), "Sendingtransaction\n", UVM_LOW)
 seq_item.print();
 @(posedge lpi_vif.lpi_clk);
 lpi_vif.slp_req0 <= seq_item.slp_req0;
 lpi_vif.slp_req1 <= seq_item.slp_req1;
 lpi_vif.wakeup_req1 <= seq_item.wakeup_req0;
 lpi_vif.wakeup_req0 <= seq_item.wakeup_req1;

 seq_item_port.item_done();
 end

endtask: run_phase

endclass:lpi_driver

4.8.6  �lpi_monitor.sv

class lpi_monitor extends uvm_monitor;
 `uvm_component_utils(lpi_monitor)

 //Interface
 virtual lpi_if lpi_vif;

4  UVM (Universal Verification Methodology)

55

 //UVM specific methods
 function new (string name="lpi_monitor", uvm_component parent=null);
 super.new (name, parent);
 endfunction

 function void build_phase (uvm_phase phase);
 endfunction : build_phase

 function void connect_phase (uvm_phase phase);
 endfunction : connect_phase

 extern task run_phase (uvm_phase phase);
 endclass:lpi_monitor

 task lpi_monitor::run_phase(uvm_phase phase);
 endtask : run_phase

4.8.7  �lpi_agent.sv

class lpi_agent extends uvm_agent;

 uvm_active_passive_enum is_active;

 //Component
 lpi_driver lpi_driver_h;
 lpi_sequencerlpi_sequencer_h;
 lpi_monitorlpi_monitor_h;

 //Interface
 virtual lpi_if lpi_vif;

 `uvm_component_utils_begin(lpi_agent)
 `uvm_field_enum(uvm_active_passive_enum, is_active, UVM_ALL_ON)
 `uvm_component_utils_end

 //UVM methods
 function new (string name, uvm_component parent=null);
 super.new (name, parent);
 endfunction

4.8 � UVM Example: Two

56

 function void build_phase(uvm_phase phase);
 super.build();

 //Retrieve interface from config db
 if(!(uvm_config_db #(virtual lpi_if)::get(null, "", "lpi_
vif", lpi_vif)))
 begin
 ̀ uvm_fatal(get_name(),"Can't retrieve lpi_vif from config db\n")
 end
 //Build driver and sequencer
	 lpi_driver_h = lpi_driver::type_id::create("lpi_driver_h",
this);
	 lpi_sequencer_h= lpi_sequencer::type_id::create("lpi_
sequencer_h",this);
	 `uvm_info(get_name(), "lpi agent is active now\n", UVM_LOW)
	 `uvm_info(get_name(), "lpi agent is_active setting
finish\n", UVM_LOW)

 //Build monitor
	 lpi_monitor_h = lpi_monitor::type_id::create("lpi_monitor_h",
this);

 endfunction:build_phase

 function void connect_phase(uvm_phase phase);

	 lpi_driver_h.seq_item_port.connect(lpi_sequencer_h.
seq_item_export);
     lpi_driver_h.lpi_vif= this.lpi_vif;
 lpi_monitor_h.lpi_vif = this.lpi_vif;
 endfunction:connect_phase

endclass:lpi_agent

package lpi_agent_pkg;

 import uvm_pkg::*;

 `include "uvm_macros.svh"
 `include"lpi_seq_item.sv"
 `include"lpi_sequencer.sv"
 `include"lpi_driver.sv"

4  UVM (Universal Verification Methodology)

57

 `include"lpi_basic_seq.sv"
 `include"lpi_monitor.sv"
 `include"lpi_agent.sv"
 `include"lpi_env.sv"
 `include"lpi_top_v_sequencer.sv"
 `include"lpi_top_env.sv"

endpackage : lpi_agent_pkg

4.8.8  �lpi_basic_sequence.sv

class lpi_basic_seq extends uvm_sequence #(lpi_seq_item);
 `uvm_object_utils(lpi_basic_seq)

 rand int num_of_trans;

 //UVM specific methods
 function new (string name="lpi_basic_seq");
 super.new (name);
 endfunction

 extern task body();
endclass:lpi_basic_seq

task lpi_basic_seq::body();
 lpi_seq_itemseq_item;
 seq_item = lpi_seq_item::type_id::create("seq_item");

 for(int i = 0; i < num_of_trans; i++)
 begin
 `uvm_info(get_type_name(),$psprintf("in seq for count =
%d", i) ,UVM_LOW)
 start_item(seq_item);
 if(!seq_item.randomize())begin
 `uvm_error("body","Randomization failed for seq_item")
 end
 ̀ uvm_info(get_type_name(),$psprintf("obj is req0 = %d, req1
= %d, sleep0 = %d,sleep1 = %d", seq_item.wakeup_req0, seq_item.
wakeup_req1, seq_item.slp_req0, seq_item.slp_req1) ,UVM_LOW)
 finish_item(seq_item);
 end
endtask: body

4.8 � UVM Example: Two

58

4.8.9  �lpi_basic_test.sv

class lpi_basic_test extends uvm_test;
 `uvm_component_utils(lpi_basic_test)
 lpi_basic_seqlpi_basic_seq_h;
 lpi_top_env m_lpi_top_env;
 virtual lpi_if lpi_vif;

 //Constructor
 function new (string name = "lpi_basic_test", uvm_compo-
nent parent);
 super.new (name, parent);
 endfunction

// Build Phase
 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 m_lpi_top_env= lpi_top_env::type_id::create("m_lpi_top_env",
this);
 lpi_basic_seq_h= lpi_basic_seq::type_id::create("lpi_basic_
seq_h", this);
 set_config_int("m_lpi_top_env.lpi_env_h.lpi_agent_h", "is_
active", UVM_ACTIVE);
 endfunction:build_phase

//RUN Phase
 task run_phase(uvm_phase phase);
 super.run_phase(phase);
 phase.raise_objection(this, "starting test_seq");

 if(!(uvm_config_db #(virtual lpi_if)::get(null, "", "lpi_vif",
lpi_vif)))
 begin
 ̀ uvm_fatal(get_name(),"Can't retrieve lpi_vif from config db\n")
 end

 if (!lpi_basic_seq_h.randomize() with {num_of_trans == 20;})
	 `uvm_fatal(get_name(), "Randomization of lpi_basic_seq_h
Sequence Failed \n")

 `uvm_info(get_name(),"starting seq here \n",UVM_LOW)

 wait (lpi_vif.lpi_rstn == 1);
 `uvm_info(get_name(),"reset done\n",UVM_LOW)

4  UVM (Universal Verification Methodology)

59

	 lpi_basic_seq_h.start(m_lpi_top_env.lpi_env_h.lpi_
agent_h.lpi_sequencer_h);

	 `uvm_info(get_name(),"##################################
############ \n",UVM_LOW)
	 `uvm_info(get_name(),"###!!!!!! Hello World !!!!!!###
\n",UVM_LOW)
	 uvm_info(get_name(),"##################################
############ \n",UVM_LOW)

 phase.drop_objection(this,"Finished lpi_basic_test\n");
 endtask

endclass

4.8.10  �lpi_env.sv

class lpi_env extends uvm_env;
 `uvm_component_utils(lpi_env)

//Agent
 lpi_agent lpi_agent_h;

 //UVM methods
 function new (string name="lpi_env", uvm_component parent);
 super.new (name,parent);
 endfunction

 extern function void build_phase(uvm_phase phase);
 extern function void connect_phase(uvm_phase phase);

endclass:lpi_env

function void lpi_env::build_phase(uvm_phase phase);
 super.build_phase(phase);
 //Build agent
	 lpi_agent_h= lpi_agent::type_id::create("lpi_agent_h",
this);
endfunction:build_phase

function void lpi_env::connect_phase(uvm_phase phase);
endfunction:connect_phase

4.8 � UVM Example: Two

60

4.8.11  �lpi_top_v_sequencer.sv

class lpi_top_v_sequencer extends uvm_sequencer;
 `uvm_component_utils(lpi_top_v_sequencer)
 uvm_sequencer_baselpi_sqr;

	 function new (string name = "lpi_top_v_sequencer", uvm_
component parent=null);
 super.new (name, parent);
 endfunction

endclass:lpi_top_v_sequencer

4.8.12  �lpi top environment.sv

class lpi_top_env extends uvm_env;
 `uvm_component_utils(lpi_top_env)

 //Global event
 uvm_event_poole_pool = uvm_event_pool::get_global_pool();

 // Instantiate environments
 lpi_top_v_sequencerlpi_top_v_sqr_h;
 lpi_env lpi_env_h;

 // Methods
 extern function new (string name="lpi_top_env", uvm_component
parent);
 extern function void build_phase(uvm_phase phase);
 extern function void connect_phase(uvm_phase phase);
 extern task run_phase(uvm_phase phase);
 endclass: lpi_top_env

function lpi_top_env::new (string name="lpi_top_env", uvm_compo-
nent parent);
 super.new (name, parent);
endfunction

function void lpi_top_env::build_phase(uvm_phase phase);
 string msg = "\n";

4  UVM (Universal Verification Methodology)

61

 msg = {msg, "=======================================\n"};
 msg = {msg, "*LPI TOP ENV BUILD PHASE SUMMARY*\n"};
 msg = {msg, "=======================================\n"};
 // Setting default verbosity to LOW
 if (!$test$plusargs("UVM_VERBOSITY")) begin
	 `uvm_info (get_name()," \nUVM_VERBOSITY not defined, using UVM_
LOW \n ", UVM_LOW)
	 uvm_top.set_report_verbosity_level_hier(UVM_LOW);
end

super.build_phase(phase);

 lpi_env_h = lpi_env::type_id::create("lpi_env_h",this);
 //*** Build Virtual Sequencer ***
 msg = {msg, "LPI TOP V_SEQUENCER\n"};
	 lpi_top_v_sqr_h = lpi_top_v_sequencer::type_id::create("lpi_
top_v_sqr_h", this);

 endfunction:build_phase

//Connect Phase
function void lpi_top_env::connect_phase(uvm_phase phase);
 string msg = "\n";
 int i;
 super.connect();
 msg = {msg, "=======================================\n"};
 msg = {msg, "*LPI TOP ENV CONNECT PHASE SUMMARY*\n"};
 msg = {msg, "=======================================\n"};

 lpi_top_v_sqr_h.lpi_sqr = lpi_env_h.lpi_agent_h.lpi_sequencer_h;
 //Connect other agents sequencers
 uvm_config_db #(lpi_top_v_sequencer)::set(uvm_top, "", "lpi_
top_v_sqr_h", lpi_top_v_sqr_h);
 `uvm_info(get_name(), msg, UVM_LOW)
//---
 endfunction:connect_phase

task lpi_top_env::run_phase(uvm_phase phase);
int i;
super.run_phase(phase);
endtask

4.8 � UVM Example: Two

62

4.8.13  �lpi_testbench.sv

`include "uvm_macros.svh"
 `default_nettype wire

module lpi_testbench();
import uvm_pkg::*;
reg lpi_dut_clk;
reg dut_rst_n;
//Interface
lpi_iflpi_dut_if (.lpi_clk(lpi_dut_clk));
 //set lpi_if to config DB
 initial
 begin
 uvm_config_db#(virtual lpi_if)::set(null, "", "lpi_vif",
lpi_dut_if);
end

lpi dut_lpi(
 .clk(lpi_dut_clk),
.rst_n(dut_rst_n),
.slp_req0(lpi_dut_if.slp_req0),
.slp_req1(lpi_dut_if.slp_req1),
.wakeup_req0(lpi_dut_if.wakeup_req0),
.wakeup_req1(lpi_dut_if.wakeup_req0),
.ss_wakeup(lpi_dut_if.ss_wakeup),
.ss_sleep(lpi_dut_if.ss_sleep)
);

initial
begin
 lpi_dut_clk = 0;
dut_rst_n = 0;
#1000ns;
dut_rst_n = 1;
end

always
begin
 #10ns lpi_dut_clk = ~lpi_dut_clk;
end

4  UVM (Universal Verification Methodology)

63

initial
begin
 #0; run_test();
end

endmodule

4.9  �UVM Is Reusable

As discussed before, one of UVM’s main advantage is that it is reusable. Reusable
in the sense that once you put together the required code/infrastructure in place,
using UVM class libraries, you will be able to carry forward that to the next project.
Only the driver (in UVM agent) and the basic transaction (sequence) and sequence
library that contains tests need to change.

Let us examine Fig. 4.14. This figure shows the UVM agent level implementa-
tion. There is a Stimulus Generator, a response “collector,” and a scoreboard. A
scoreboard is nothing but a monitor/checker that checks to see that the response is
in accordance with the specification of the design.

So, what is reusable in this verification environment? Here are the components
that are (almost) generic and can be reused.

Fig. 4.14  Reusable UVM example

4.9 � UVM Is Reusable

64

•	 Agent sequencer
•	 TLM FIFO
•	 Consumer
•	 Entire transaction-level communication mechanism
•	 All “class” interfaces
•	 The overall architecture of the entire verification environment

4  UVM (Universal Verification Methodology)

65© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_5

Chapter 5
Constrained Random Verification (CRV)

Chapter Introduction
Constrained Random Verification (CRV) is a methodology that is supported by
SystemVerilog which has a built-in constraint solver. This allows you to constraint
your stimulus to better target a design function, thereby allowing you to reach your
coverage goal faster with accuracy. From that sense, coverage and CRV go hand in
hand. You check your coverage and see where the coverage holes are. You then
constrain your stimulus to target those holes and improve coverage.

As part of verification strategy, you start with direct testing to target “directly”
features that you need to verify. But directed testing runs out of steam very fast. If
you jump straight to random, you may or may not hit the corner cases of impor-
tance. Fully random can end up wasting a lot of simulation cycles without improv-
ing coverage. That’s where constrained random comes into picture.

5.1  �Productivity Gain with CRV

Figure 5.1 shows a chart used by EDA vendors to highlight the productivity and
quality gain with the use of constrained random stimuli. The Y-axis is the coverage
achieved and the X-axis is the time it took to achieve that coverage. As you notice,
directed testing may take you to that goal but at the expense of lengthy time in test
development, debug, and simulation. This is because for every corner case, you will
be creating a new test case and hope against hope that you will reach that corner
case. A lot of trial and error will take place. The debug time will dramatically
increase as the number of tests increase, not to mention the simulation and regres-
sion time.

In contrast, if you understand the logic that is not covered and constrain and
randomize your stimuli to target that logic, you will not only get to the coverage
goal faster but also will find some of those hidden corner cases that you had not even
envisioned.

66

CRV is not new. What is new is that SystemVerilog has incorporated an exhaus-
tive constraint solver that allows you to constraint your stimuli in a logical and
organized way. The language semantics are easy to understand and easy to deploy.

Let us look at a simple CRV methodology that shows the need and importance of
having coverage as an integral part of your verification methodology and CRV as
part of that methodology to cover missing gaps in functional coverage.

5.2  �CRV Methodology

Figure 5.2 shows the functional verification methodology in a nut shell. Traditionally,
both design and verification teams start running with the specifications written by
the architects of the design. The DV (design verification) team starts putting together
a verification architecture/environment, test plan, and a testbench. Tests are written
per the test plan and the verification cycle begins. The key component missing in
this traditional methodology is planning for coverage (and assertions). Without a
comprehensive coverage plan, the team has no idea how their tests and testbenches
are performing. They use code coverage (if) at the most.

This is where CRV and coverage marry. The first step is to create a functional
coverage plan (Chap. 7). Once the coverage plan is ready, you measure the coverage
after each simulation (regression) run. This process can also be automated, and the
major EDA vendors provide just such mechanisms.

If the coverage is not complete, you identify the holes in your coverage results.
This is where CRV comes into picture. Since your directed tests are leaving holes in
the coverage results (think corner cases), you now need to move onto constrained
random stimuli. Constrained random allows you to narrow down your stimuli to
those areas where coverage is lacking. Now, you design your stimulus with con-
straints. There are many ways to place constraints on your stimulus, some of which
are explained in the coming sections.

Coverage-driven,
constrained-random

methodology

Productivity
gain

Traditional
directed

methodology

Quality
gain

Time

Goal

%
 C

overage

Fig. 5.1  Advantage of coverage-driven constrained random verification methodology

5  Constrained Random Verification (CRV)

http://dx.doi.org/10.1007/978-3-319-59418-7_7

67

After you constrain your stimulus, you go through the simulation cycle and
repeat the coverage cycle and further identify remaining coverage holes. You further
apply constraints to your stimulus and repeat the entire loop.

CRV is an objective methodology in that you know objectively if you are done
verifying your chip (as opposed to subjective measure where as soon as you stop
finding bugs, you may stop simulations). A coverage- and assertions-based method-
ology is discussed in Sect. 7.3.

Now, let us look at some of the CRV basics and features provided by
(SystemVerilog_LRM_1800-2012). CRV is a very involved methodology, and I
strongly suggest referring to the SystemVerilog LRM to study it in detail. The full
scope of CRV discussion is out of the scope of this book.

5.3  �Basics of CRV

The random constraints are typically specified on top of an object-oriented data
abstraction that models the data to be randomized as objects that contain random
variables and user-defined constraints. The constraints determine the legal values
that can be assigned to the random variables. Objects are ideal for representing
complex aggregate data types and protocols such as network packets.

Fig. 5.2  Constrained random verification methodology

5.3  Basics of CRV

http://dx.doi.org/10.1007/978-3-319-59418-7_7

68

Constraint programming is a powerful method that lets users build generic,
reusable objects that can later be extended or constrained to perform specific func-
tions. The approach differs from both traditional procedural and object-oriented
programming.

SystemVerilog uses an object-oriented method for assigning random values to
the member variables of an object, subject to user-defined constraints. Here’s an
example.

Referring to Fig. 5.3, the top-left corner text block shows a class named
PacketBase. It uses “rand” keyword for variables src, len, and payload. These are
then the variables that can be randomized. Then we provide a constraint on the
“payload_size.”

We then extend the PacketBase class to EtherPacket class (top right text block).
Here we constrain “src” and “len,” further constrain “payload_size,” and constrain
the “payld” to “h aa”

The class “stim_gen” instantiates EhterPacket and uses the method “randomize”
to randomize (with constraints) the “rand” variables of PacketBase (and extended
class EtherPacket). Calling randomize () causes new values to be selected for all the
random variables in an object so that all the constraints are true (satisfied). We don’t
have any “rand” variables in this example which are unconstrained. But if we did,
unconstrained variables are assigned any value in their declared range.

Using inheritance to build layered constraint systems enables the development of
general-purpose models that can be constrained to perform application-specific
functions

The simulation log is shown in the right bottom block of Fig. 5.3.
Objects can also be further constrained using the “randomize () with” construct

which declares additional constraints in-line with the call to randomize(). For
example,

int randomVal;
randomVal = PacketBase.randomize with {payload_size > 15; pay-
load_size < 30;};

The above examples illustrate several important properties of constraints, as fol-
lows ((SystemVerilog_LRM_1800-2012):

–– Constraints can be any SystemVerilog expression with variables and constants of
integral type (e.g., bit, reg, logic, integer, enum, packed struct).

–– The constraint solver will be able to handle a wide spectrum of equations, such
as algebraic factoring, complex Boolean expressions, and mixed integer and bit
expressions.

–– If a solution exists, the constraint solver will find it. The solver can fail only
when the problem is over-constrained and there is no combination of random
values that satisfy the constraints.

–– Constraints support only 2-state values. The 4-state values (X or Z) or 4-state
operators (e.g., ===, !==) are illegal and will result in an error.

–– The solver can randomize singular variables of any integral type.

5  Constrained Random Verification (CRV)

69

F
ig

. 5
.3

 
C

on
st

ra
in

ed
 r

an
do

m
 v

er
ifi

ca
tio

n
ex

am
pl

e

5.3  Basics of CRV

70

Note that every class contains pre_randomize() and post_randomize() methods
which are automatically called by randomize() before and after computing new ran-
dom values.

pre_randomize() method is as follows:

function void pre_randomize()

Same applies to post_randomize()
When obj.randomize() is invoked, it first invokes pre_randomize() on obj and

also all of its random object members that are enabled. After the new random values
are computed and assigned, randomize() invokes post_randomize() on obj and also
all its random object members that are enabled.

Note the following rules that apply to randomize():
Random variables declared as static are shared by all instances of the class in

which they are declared. Each time the randomize() method is called, the variable is
changed in every class instance.

–– If randomize() fails, the constraints are infeasible, and the random variables
retain their previous values.

–– If randomize() fails, post_randomize() is not called.
–– The randomize() method is built-in and cannot be overridden.
–– The built-in methods pre_randomize() and post_randomize() are functions and

cannot block.

5.3.1  �Random Variables: Basics

There are two types of random type–modifier keywords: “rand” and “randc.”
Variable declared with “rand” keyword is standard random variables. Their val-

ues are uniformly distributed over their range. For example:

rand bit [3:0] length;

This is a 4-bit unsigned variable with a range from 0 to 15. If unconstrained, this
variable will be assigned any value in the range from 0 to 15 with equal probability.
So, in this example, the probability of the same value repeating on successive calls
to randomize is 1/16.

In contrast, “randc” are random-cyclic variables that cycle through all the value
in a random permutation of their declared range. For example:

randc bit [1:0] length;

The variable “length” can take on values 0,1,2, and 3. Randomize computes an
initial random permutation of the range values of “length” and then returns those

5  Constrained Random Verification (CRV)

71

values in order on successive calls. After it returns the last element of a permutation,
it repeats the process by computing a new random permutation. Here’s how these
permutations will work.

0 -> 3 -> 2 -> 1 (initial)
2 -> 1 -> 3 -> 0 (next permutation)
2 -> 0 -> 1 -> 3 (next permutation)
…..

Note that the semantics of random-cyclic (randc) variables will be solved before
other random variables. A set of constraints that includes both rand and randc vari-
ables will be solved so that the randc variables are solved first.

If a random variable is declared as static, the randc state of the variable will also
be static. Thus, randomize chooses the next cyclic value (from a single sequence)
when the variable is randomized through any instance of the base class.

“rand” and “randc” on Arrays
–– Arrays can be declared “rand” or “randc” in which case all the array’s member

elements will be considered ‘rand’ or “randc.”
–– Individual array elements can be constrained, in which case the index expression

may include iterative constraint loop variables, constants, and state variables.
–– Dynamic arrays, associative arrays, and queues can be declared rand or randc.

All the elements in the array are randomized, overwriting any previous data.
Please refer to (SystemVerilog_LRM_1800-2012) for further usage and restric-
tions on “rand” arrays.

–– An object handle can be declared rand, in which case all of that object’s variables
and constraints are solved concurrently with the variables and constraints of the
object that contain the handle. Object handles cannot be declared randc.

–– An unpacked structure can be declared rand. Unpacked structures cannot be
declared randc. A member of an unpacked structure can be made random by hav-
ing a rand or randc modifier in the declaration of its type. Members of unpacked
structures containing a union as well as members of packed structures cannot be
allowed to have a random modifier.

The (SystemVerilog_LRM_1800-2012) provides plenty of examples to further
solidify the randomize() method around “rand” and “randc.” Complete discussion
of those features is out of the scope of this book.

5.3.2  �Random Number System Functions and Methods

SystemVerilog provides the following system functions and methods to further aug-
ment the constrained random verification methodology.

5.3  Basics of CRV

72

$urandom()
$urandom_range()

srandom()
get_randstate()
set_randstate()

Let us look at each in detail.
$urandom() system function provides a mechanism for generating pseudoran-

dom numbers. The functional returns a new 32-bit random number each time it is
called. The return number is unsigned.

For example:

bit [63:0] cache_line_addr;
bit [7:0] tag_address;

cache_line_addr[31:0] = $urandom (1234);// get a 32 bit unsigned
number with the seed ‘1234’
cache_line_addr = ($urandom, $urandom) //Get 64 bit unsigned
address for the cache line

tag_address = $urandom & 32’h 0000_00ff; //mask MSB 31:8 and get a
random 8 bit number //for the tag address

Note that the “seed” is an optional argument that determines the sequence of
random number generated. This is for predictability of random number generation.
In other words, the same sequence of random numbers will be generated every time
the same seed is used. “seed” is very important for regression runs where each run
needs to work with the same sequence of random numbers.

$urandom_range() returns an unsigned integer within a specified range. For
example:

Value = $urandom_range(15,0);

Where 15 is the maxval and 0 is the minval (both are int unsigned). The function
will return a value in the range of 15 and 0.

Value = $urandom_range(0,15);

Here the maxval is greater than minval!! In such a case, the arguments are auto-
matically reversed so that the first argument is larger than the second argument. So,
in this case also, value will be in the range from 0 and 15 inclusive.

srandom() is a method. It allows manually seeding the random number genera-
tion (RNG) of objects or threads. Its syntax is

function void srandom (int seed);

5  Constrained Random Verification (CRV)

73

The srandom() method initializes an object’s RNG (random number generation)
using the value of the given seed.

get_randstate() method retrieves the current state of an object’s RNG.
Here’s the syntax:

function string get_randstate();

The get_randstate() method returns a copy of the internal state of the RNG asso-
ciated with the given object.

The RNG state is a string of unspecified length and format. The length and con-
t e n t s
of the string are implementation dependent. (SystemVerilog_LRM_1800-2012).

set_randstate() is a method that sets the state of an object’s RNG. The syntax of
this method is

function void set_randstate

The RNG state is a string of unspecified length and format. Calling set_rand-
state() with a string value that was not obtained from get_randstate(), or from a
different implementation of get_randstate(),
is undefined. (SystemVerilog_LRM_1800-2012)

5.3.3  �Random Weighted Case: Randcase

So, what if you want to randomize among a case of statements? Just as in the “case”
statement of SystemVerilog, there is the “randcase” statement available for CRV.

The keyword “randcase” introduces a case statement that randomly selects one
of its branches. The randcase_item expressions are nonnegative integral values that
constitute the branch weights. An item’s weight divided by the sum of all weights
gives the probability of taking that branch.

For example:

randcase
10: X=X+1;
 5: Y=Y+1;
3: Z=Z+1;
endcase

The total weight of all three case statements is 18. The probability of X=X+1
being executed is 10/18. Similarly, Y=Y+1 has the probability of 5/18 and Z=Z=1
has the probability of 3/18. This is a great feature in that you not only get the ran-
domized effect but you can also (in some sense) constrain and get the randomization
effects in your favor.

5.3  Basics of CRV

74

If a branch specifies a zero weight, then that branch is not taken. If all
randcase_items specify zero weights, then no branch is taken and a warning will be
issued. The randcase weights can be arbitrary expressions, not just constants. For
example:

byte a,b;
randcase
a+b : X=X+1;
a ^ b : Y=Y+1;
a – b : Z=Z=1;
endcase

In this example, the sum of the weights is computed using standard addition
semantics (maximum precision of all weights), where each sum is unassigned. The
weights in this example use 8-bit precision (a,b are declared as byte). The resulting
weights are added as 8-bit unsigned values. Each call to randcase retrieves one ran-
dom number in the range of 0 to the sum of the weights. The weights are then
selected in declaration order: smaller random numbers correspond to the first (top)
weight statements.

To summarize, this section gives a high-level view of the constrained random fea-
tures provided by the SystemVerilog LRM. The full description of each of the feature
is beyond the scope of this book. Please refer to (SystemVerilog_LRM_1800-2012).

5  Constrained Random Verification (CRV)

75© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_6

Chapter 6
SystemVerilog Assertions (SVA)

Chapter Introduction
SystemVerilog Assertions (SVA) is one of the most important components of
SystemVerilog when it comes to design verification. SVA is instrumental in finding
corner cases, ease of debug, and coverage of design’s sequential logic. We will dis-
cuss high-level SVA methodology, SVA and functional coverage-driven methodol-
ogy, and plenty of applications to solidify the concepts.

6.1  �Evolution of SystemVerilog Assertions

SVA is one of the most important technologies to deploy toward robust design veri-
fication. Note that SystemVerilog language syntax and semantics are totally differ-
ent from SVA. If you know SystemVerilog/UVM only, you will not know SVA
language. SystemVerilog and SVA, even though under SystemVerilog umbrella, are
totally orthogonal languages (even though they both use the same simulation ker-
nel). Hence, one needs to learn SVA on its own.

First, what’s an assertion? Very simple definition. An assertion is simply a check
against the specification of your design that you want to make sure never violates.
If the specs are violated, you want to see a failure. Let us see how SVA came about.
What contributed to its evolution?

Referring to Fig. 6.1 SystemVerilog Assertion evolution, we can see that
SystemVerilog Assertion language is derived from many different languages.
Features from these languages either influenced the language or were directly used
as part of the language syntax/semantic.

Sugar from IBM led to PSL. Both contributed to SVA. The other languages that
contributed are Vera, “e,” CBV from Motorola, and ForSpec from Intel.

In short, when we use SystemVerilog Assertion language, we have the benefit of
using the latest evolution of an assertion language that benefited from many other
robust assertion languages.

76

6.2  �SystemVerilog Assertion Advantages

6.2.1  �Assertions Shorten Time to Develop

A very simple example of an assertion is shown in Fig. 6.2. This example contrasts
SystemVerilog Assertion code with that of behavioral SystemVerilog. As you notice
they are completely orthogonal. SVA code is much more readable than SystemVerilog
code. This dramatically reduces time to develop complex checkers for your design.

Fig. 6.1  SystemVerilog Assertion evolution

Fig. 6.2  Difference between SystemVerilog and SVA

6  SystemVerilog Assertions (SVA)

77

The SVA code is very self-explanatory. There is the property “ldpcheck” that
says “at posedge clock, if FRAME_ rises, it implies that within the next two clocks
LDP_ falls.” This is almost like writing the checker in English. We then “assert” this
property, which will check for the required condition to meet at every posedge clk.
We also “cover” this property to see that we have indeed exercised (i.e., ‘cover’ed)
the required condition.

Now examine the SystemVerilog code for the same check. There are many ways
to write this code. One of the ways at behavioral level is shown. Here you “fork” out
two procedural blocks, one that monitors LDP_ and another that waits for two
clocks. You then disable the entire block (“ldpcheck”) when either of the two proce-
dural blocks completes. As you can see, not only is the checker very hard to read/
interpret but also very prone to errors. You may end up spending more time debug-
ging your checker than the logic under verification.

6.2.2  �Assertions Improve Observability

One of the most important advantages of assertions is that they fire at the source of
the problem; assertions are located local to sequential conditions in your design. In
other words, you don’t have to back trace a bug all the way from primary output to
somewhere internal to the design where the bug originates. Assertions are written
such that they are close to logic (e.g., @ (posedge clk) state0 |-> Read); such an
assertion is sitting close to the state machine, and if the assertion fails, we know that
when the state machine was in state0 that Read did not take place. Some of the most
useful places to place assertions are FIFOs (especially the asynchronous variety),
counters, block-to-block interface, block-to-IO interface, state machines, etc. These
constructs are where many of the bugs originate. Placing an assertion that checks for
local condition will fire when that local condition fails, thereby directly pointing to
the source of the bug. This is shown in Fig. 6.3.

Traditional verification can be called black box verification with black box
observability, meaning, you apply vectors/transactions at the primary input of the
“block” without caring for what’s in the block (black box verification), and you
observe the behavior of the block only at the primary outputs (black box observ-
ability). Assertions on the other hand allow you to do black box verification with
white box (internal to the block) observability.

6.2.3  �Assertions Shorten Time to Cover

Referring to Fig. 6.4, assertions not only help you find bugs but also help you deter-
mine if you have covered (i.e., exercised) design logic, mainly temporal domain
conditions. They are very useful in finding temporal domain coverage of your test-
bench. Here is the reason why this is so important.

6.2 � SystemVerilog Assertion Advantages

78

Fig. 6.3  Assertions improve observability

Fig. 6.4  Assertions shorten time to full coverage

6  SystemVerilog Assertions (SVA)

79

Let us say, you have been running regressions 24*7 and have stopped finding
bugs in your design. Does that mean you are done with verification? No. Not finding
a bug could mean one of two things: (1) there is indeed no bug left in the design or
(2) you have not exercised (or covered) the conditions that exercise the bugs. You
could be continually hitting the same piece of logic in which no further bugs remain.
In other words, you could be reaching a wrong conclusion that all the bugs have
been found.

In brief, coverage includes three components (we will discuss this in detail in the
chapter on functional coverage): (1) code coverage (which is structural) which
needs to be 100%, (2) functional coverage that needs to be designed to cover func-
tionality (i.e., intent) of the entire design and must completely cover the design
specification, and (3) sequential domain coverage (using SVA “cover” feature)
which needs to be carefully designed to fully cover all required sequential domain
conditions of the design.

Ok, let us go back to the simple bus protocol assertion that we saw in the previ-
ous section. Let us see how the “cover” statement in that SVA assertion works. The
code is repeated here for readability.

In this code, you see that there is a “cover” statement. What it tells you is “did you
exercise this condition” or “did you cover this property.” In other words, and as
discussed above, if the assertion never fails, that could be because of two reasons:
(1) you don’t have a bug or (2) you never exercised the condition to start with! With
the cover statement, if the condition gets exercised but does not fail, you get that
indication through the “pass” action block associated with the “cover” statement.
Since we haven’t yet discussed the assertions in any detail, you may not completely
understand this concept, but determination of sequential domain coverage of your
design is an extremely important aspect of verification and must be made part of
your coverage plan.

To reiterate, SVA supports the “cover” construct that tells you if the assertion has
been exercised (covered). Without this indication and in the absence of a failure,
you have no idea if you indeed exercised the required condition. In our example, if
FRAME_ never rises, the assertion won’t fire, and obviously there won’t be any bug
reported. So, at the end of simulation, if you do not see a bug or you do not even see

 property ldpcheck;

@(posedge clk) $rose (FRAME_) |-> ##[1:2] $fell (LDP_);
endproperty
aP: assert property (ldpcheck) else $display(“ldpcheck FAIL”);
cP: cover property (ldpcheck) $display("ldpcheck PASS");

6.2 � SystemVerilog Assertion Advantages

80

the “ldpcheck PASS” display, you know that the assertion never fired. In other
words, you must see the “cover property” statement executed in order to know that
the condition did get exercised.

6.2.4  �One-Time Effort: Many Benefits

Assertions written once have multiple uses as shown in Fig. 6.5. Note that Accelera
has produced a library of commonly used assertions which can be an effective way
to start learning assertions as well as examine the code written by experts at Accelera
and learn SVA coding techniques.

OVL Library  Open Verification Library. This library of predefined checkers was
written in Verilog before PSL and SVA became mainstream. Currently the library
includes SVA (and PSL)-based assertions as well. The OVL library of assertion
checkers is intended for use by design, integration, and verification engineers to
check for good/bad behavior in simulation, emulation, and formal verification. OVL
contains popular assertions such as FIFO assertions, among others. OVL is still in
use, and you can download the entire standard library from Accelera website http://
www.accellera.org/downloads/standards/ovl.

We won’t go into OVL detail since there is plenty of information available on
OVL on net. OVL code itself is quite clear to understand. It is also a good place to
see how assertions are written for “popular” checks, once you have better under-
standing of assertion semantics.

Fig. 6.5  Multiple uses of SVA

6  SystemVerilog Assertions (SVA)

http://www.accellera.org/downloads/standards/ovl
http://www.accellera.org/downloads/standards/ovl

81

6.3  �Creating an Assertion Test Plan: PCI Read Example

So, who writes the assertions? This has been a contentious issue between design and
verification teams. But the answer is very simple. Writing assertions is the respon-
sibility of both design and verification teams.

Design team:

•	 Microarchitectural-level decisions/assumptions are not visible to DV engineers.
So, designers are best suited to guarantee uArch-level logic correctness.

•	 Every assumption is an assertion. If you assume that the “request” you send to
the other block will always get an ‘ack’ in two clocks, that’s an assumption. So,
design an assertion for it.

•	 Add assertions as you design your logic, not as an afterthought.

Verification (DV) team:

•	 Add assertions to check macro functions and chip/SoC-level functionality:

–– Once the packet has been processed for L4 layer, it will indeed show up in the
DMA queue.

–– A machine check exception indeed sets PC to the exception handler address.

•	 Add assertions to check interface IO logic:

–– After reset is de-asserted, none of the signals ever go “X.”
–– If the processor is in Wait Mode and no instructions are pending, it must assert

a SleepReq to memory subsystem within 100 clocks.
–– On Critical Interrupt, the external clock/control logic block must assert CPU_

wakeup within ten clocks.

DEVSEL_

TRDY_

IRDY_

C_BE_

AD

CLK 1 2 4 5 6 7 8 93

FRAME_

address

busCmd

w
ai

t

da
ta

 tr
an

sf
er

w
ai

t

da
ta

 tr
an

sf
er

w
ai

t

da
ta

 tr
an

sf
er

BE_'s

data-1 data-2 data-3

Fig. 6.6  PCI read cycle

6.3 � Creating an Assertion Test Plan: PCI Read Example

82

Let us consider an example of PCI read protocol. Given the specification in
Fig. 6.6, what type of assertions would the design team add, and what type would
the verification team add? The tables below describe the difference. I have only
given few of the assertions that could be written. There are many more assertions
that need to be written by verification and design engineers. However, this example
will act as a basis for differentiation.

Designers add assertions at microarchitecture level, while verification engineers
concentrate at system level, specifically the interface level in this example.

The PCI protocol is for a simple READ. With FRAME_ assertion, AD address
and C_BE_ have valid values. Then IRDY_ is asserted to indicate that the master is
ready to receive data. Target transfers data with intermittent wait states. Last data
transfer takes place a clock after FRAME_ is de-asserted.

Let us see what type of assertions need to be written by design and verification
engineers.

6.3.1  �PCI: Read Protocol Assertion Test Plan (Verification Team)

Property Name

Protocol Interface Assertions

checkPCI_AD_CBE
(check1)

On falling edge of
FRAME_AD and C_BE_
bus cannot be unknown

When both IRDY_and
TRDY_are asserted, AD
or C_BE_bus cannot be
unknown

FRAME can be de-
asseryted only if IRDY_is
asserted

TRDY_can be asserted
only if DEVSEL_is
asserted

Once the cycle starts
(i.e at FRAME_
assertion) C_BE_
cannot float until
FRAME_is de-asserted.

checkPCI_Dataphase
(check2)

checkPCI_Frame_Irdy
(check3)

checkPCI_trdyDevsel
(check4)

checkPCI_CBE_during_t
rx (check5)

Description Property FAIL? Property Covered?

Fig. 6.7  PCI: basic read protocol test plan (verification team)

6  SystemVerilog Assertions (SVA)

83

6.3.2  �PCI: Read Protocol Assertions Test Plan (Design Team)

Note the last two columns in the table of Figs. 6.7 and 6.8. (1) Did the property
FAIL? (2) Did the property get covered? There is no column for the property PASS,
that is, because of “cover” in an assertion that triggers only when a property is exer-
cised but does not fail; in other words, it passes. Hence, there is no need for a PASS
column. This “cover” column tells you that you indeed covered (exercised) the
assertion and that it did not fail. When the assertion FAILs, it tells you that the asser-
tion was exercised and that it failed during the exercise.

6.4  �SVA Assertion Methodology Components

6.4.1  �What Type of Assertions Should I Add?

It is important to understand and plan for the types of assertions you need to add.
Make this part of your verification plan. It will also help you partition work among
your team.

Note the “performance implication” assertions. Many miss on this point. Coming
from processor background, I have seen that these assertions turn out to be some of
the most useful assertions. These assertions would let us know of the, e.g., cache
read latency upfront and would allow us enough time to make architectural changes
to improve it.

•	 RTL assertions (design intent)

–– Intra-module

Illegal state transitions, deadlocks, and livelocks
FIFOs, onehot, etc.

•	 Block interface assertions (block interface intent)

–– Inter-module protocol verification, illegal combinations (ack cannot be “1” if
req is “0”), and steady-state requirements (when slave asserts write_queue_
full, master cannot assert write_req)

•	 Chip functionality assertions (chip/SoC functional intent)

–– A PCI transaction that results in Target Retry will indeed end up in the Retry
Queue.

6.4 � SVA Assertion Methodology Components

84

Property Name

Microarchitectural Assertions

check_pci_adrcbe_St PCI state machine is in
'adr_cbe' state the first
clock edge when
FRAME_is found
asserted

PCI state machine is in
'data_transfer' state
when both IRDY_and
TRDY_ are asserted

PCI state machine is in
'idle' state when both
FRAME_and IRDY_are
de-asserted

PCI state machine is in
'wait' state if either
IRDY_or TRDY_is de-
asserted

check_pci_data_St

check_pci_idle_St

check_pci_wait_St

Description Property Property Covered?

FAIL?

Fig. 6.8  Basic read protocol test plan: design team

•	 Chip interface assertions (chip interface intent)

–– Commercially available standard bus assertion VIPs can be useful in compre-
hensive check of your design’s adherence to std. protocol such as PCIe,
AXI, etc.

–– Every design assumption on IO functionality is an assertion.

•	 Performance implication assertions (performance intent)

–– Cache latency for read; packet processing latency, etc. are to catch perfor-
mance issues before it’s too late. This assertion works like any other. For
example, if the “Read Cache Latency” is greater than two clocks, fire the
assertion. This is an easy-to-write assertion with very useful return.

6  SystemVerilog Assertions (SVA)

85

6.4.2  �Protocol for Adding Assertions

•	 Do not duplicate RTL.

–– White box observability does not mean adding an assertion for each line of
RTL code. This is a very important point, in that if RTL says “req” means
“grant,” don’t write an assertion that says the same thing!! Read on.

–– Capture the intent.

For example, a Write that follows a Read to the same address in the request
pipe will always be allowed to finish before the Read. This is the intent of
the design. How the designer implements reordering logic is not of much
interest. So, from verification point of view, you need to write assertions
that verify the chip design intent.

A note here that the above does not mean you do not add low-level assertions.
Classic example here is FIFO assertions. Write FIFO assertions for all
FIFOs in your design. FIFO is low-level logic, but many of the critical
bugs hang around FIFO logic, and adding these assertions will provide
maximum bang for your buck.

•	 Add assertions throughout the RTL design process.

–– They are hard to add as an afterthought.
–– Will help you catch bugs even with your simple block-level testbench.

•	 If an assertion did not catch a failure...

–– If the test failed and none of the assertions fired, see if there are assertions that
need to be added which would fire for the failing case.

–– The newly added assertion is now active for any other test that may trigger it.

Note: This point is very important toward making a decision if you have added
enough assertions. In other words, if the test failed and none of the assertions fired,
there is a good chance you still have more assertions to add.
•	 Reuse.

–– Create libraries of common “generic” properties with formal arguments that
can be instantiated (reused) with “actual” arguments. We will cover this fur-
ther in the chapter.

–– Reuse for the next project.

6.4.3  �How Do I know I Have Enough Assertions?

•	 It’s the “Test plan, test plan, test plan…”

–– Review and re-review your test plan against the design specs.
–– Make sure you have added assertions for every “critical” function that you

must guarantee works.

6.4 � SVA Assertion Methodology Components

86

•	 If tests keep failing but assertions do not fire, you do not have enough
assertions.

–– In other words, if you had to trace a bug from primary outputs (of a block or
SoC) without any assertions firing, that means that you did not put enough
assertions to cover that path.

•	 “Formal” (aka static formal aka static functional verification) tool’s ability to
handle assertions.

–– What this means is that if you don’t have enough “assertion density” (mean-
ing if a register value does not propagate to an assertion within three to five
clocks—resulting in assertions sparsely populated within design), the formal
analysis tool may give up on the state/space explosion problem. In other
words, a static functional formal tool may not be able to handle a large sequen-
tial domain. If the assertion density is high, the tool has to deal with smaller
cone of logic. If the assertion density is sparse, the tool has to deal with larger
cone of logic in both sequential and combinatorial space, and it may run out
of steam.

6.4.4  �Use Assertions for Specification and Review

•	 Use assertions (properties/sequences) for specification.

–– DV (design verification) team:

Document as much of the ‘response checking’ part of your test plan as practi-
cal directly into executable assertions. Assertions are much easier to read
than lengthy description of the response checking code.

Since assertions are quite readable, use them for verification plan review and
update

–– Design team:

Document micro-arch. level assertions directly into executable assertions.
Use it for design reviews.

•	 Assertions cross review.

–– Review:

DV team reviews macro-, chip-, and interface-level assertions with the design
team.

–– Cross review:

Block A designer reviews Block B interface assertions
Block B designer reviews Block A interface assertions

–– Incorrect assumptions among teams are detected early on.

6  SystemVerilog Assertions (SVA)

87

6.5  �Immediate Assertions

Immediate assertions are simple nontemporal domain assertions that are executed
like statements in a procedural block. Interpret them as an expression in the condi-
tion of a procedural “if” statement. Immediate assertions can be specified only
where a procedural statement is specified. The evaluation is performed immediately
with the values taken at that moment for the assertion condition variables. The
assertion condition is nontemporal, which means its execution computes and reports
the assertion results at the same time.

Figure 6.9 describes the basics of an immediate assertion. It is so called because
it executes immediately at the time it is encountered in the procedural code. It does
not wait for any temporal time (e.g., “next clock edge”) to fire itself. The assertion
can be preceded by a level-sensitive or an edge-sensitive statement. As we will see,
concurrent assertions can only work on a “sampling/clock edge”-sensitive logic and
not level-sensitive logic.

We see in Fig. 6.9 that there is an immediate assertion embedded in the proce-
dural block that is triggered by @ (posedge clk). The immediate assertion is trig-
gered after @ (posedge d) and checks to see that (b || c) is true.

Fig. 6.9  Immediate assertion example

6.5 � Immediate Assertions

88

We need to note a couple of points here. First, the very preceding statement in
this example is @ (posedge d), an edge-sensitive statement. However, it does not
have to be. It can be a level-sensitive statement also or any other procedural state-
ment. The reason I am pointing this out is that concurrent assertions can work only
off a sampling “edge” and not off a level-sensitive control. Keep this in your back
pocket because it will be very useful to distinguish immediate assertions from con-
current assertions when we cover the latter. Second, the assertion itself cannot have
temporal domain sequences. In other words, an immediate assertion cannot con-
sume “time.” It can only be combinatorial which can be executed in zero time. In
other words, the assertion will be computed, and results will be available at the same
time that the assertion was fired. If the “assert” statement evaluates to 0, X, and Z,
then the assertion will be considered to FAIL else it will be considered to PASS.

We also see in the figure that there is (what is known as) an action block associ-
ated with FAIL or PASS of the assertion. This is no different than the PASS/FAIL
logic we design for an “if…else” statement.

From syntax point of view, an immediate assertion uses only “assert” as the key-
word in contrast to a concurrent assertion that requires “assert property.”

One key difference between immediate and concurrent assertions is that concur-
rent assertions always work off the sampled value in preponed region (see Sect. 7.1)
of a simulation tick, while immediate assertions work immediately when they are
executed (as any combinatorial expression in a procedural block) and do not evalu-
ate its expression in the preponed region. Keep this thought in your back pocket for
now since we haven’t yet discussed concurrent assertions and how assertions get
evaluated in a simulation time tick. But this key difference will become important
as you learn more about concurrent assertions.

Finally, as we discussed above, the immediate assertion works on a combinato-
rial expression whose variables are evaluated “immediately” at the time the expres-
sion is evaluated. These variables may transition from one logic value to another
(e.g., 1 to 0 to 1) within a given simulation time tick, and the immediate assertion
may get evaluated multiple times before the expression variable values “settle”
down. Therefore, immediate assertions are also known to be “glitch” prone.

To complete the story, there are three types of immediate assertions:

Immediate assert
Immediate assume
Immediate cover

Details of these assertions (including deferred assertions) are beyond the scope
of this book.

Suggested book for in-depth discussion of assertions is “SystemVerilog
Assertions and Functional Coverage – a guide to methodology and applications”—
Second Edition, Springer 2016, Ashok Mehta.

6  SystemVerilog Assertions (SVA)

89

6.6  �Concurrent Assertions

Concurrent assertions are temporal domain assertions that allow creation of com-
plex sequences which are based on clock (sampling) edge semantics. This contrasts
with the immediate assertions which are purely combinatorial and do not allow any
time consumption.

Concurrent assertions are the gist of SVA language. They are called concurrent
because they execute in parallel with the rest of the design logic and are multi-
threaded. Let us start with basics and move onto the complex concepts of concurrent
assertions.

In Fig. 6.10 we have declared a property “pr1” and asserted it with a label “reqGnt”
(label is optional but highly recommended). The figure explains various parts of a
concurrent assertion including a property, a sequence and assertion of the property.

The “assert property (pr1)” statement triggers property “pr1.” “pr1” in turn waits
for the antecedent “cStart” to be true at a (posedge clk), and on it being true implies
(fires) a sequence called “sr1.” “sr1” checks to see that “req” is high when it is fired
and that two “clocks” later “gnt” is true. If this temporal domain condition is satis-
fied, then the sequence “sr1” will PASS and so will property “pr1” and the “assert
property” will be a PASS as well. Let us continue with this example and study other
key semantics:

	1.	 “assert”—you must assert a property, i.e., invoke or trigger it.

Fig. 6.10  Concurrent assertion example

6.6 � Concurrent Assertions

90

	2.	 There is an action block associated with either the pass or fail of the assertion.
	3.	 “property pr1” is edge triggered on posedge of clk (more on the fact that you

must have a sampling edge for trigger is explained further on).
	4.	 “property pr1” has an antecedent which is a signal called cStart, which if sam-

pled high (in the preponed region) on the posedge clk, will imply that the conse-
quent (sequence sr1) be executed.

	5.	 Sequence sr1 samples “req” to see if it is sampled highly the same as posedge of
clk when the sequence was triggered because of the overlapping implication (|->
) operator, and then wait for two clocks and see if “gnt” is high.

	6.	 Note that each of “cStart,” “req,” and “gnt” is sampled at the edge specified in the
property which is the posedge of “clk.” In other words, even though there is no
edge specified in the sequence, the edge is inherited from property pr1.

Note also that we are using the notion of sampling the values at posedge clk
which means that the “posedge clk” is the sampling edge. In other words, the sam-
pling edge can be anything (as long as it’s an edge and is not level sensitive), mean-
ing it does not necessarily have to be a synchronous edge such as a clock. It can be
an asynchronous edge as well. However, be very careful about using an asynchro-
nous edge unless you are sure what you want to achieve.

6.6.1  �Overlapping and Nonoverlapping Operators

Figure 6.11 further shows the equivalence between overlapping and nonoverlapping
operators. “|=>” is equivalent to “|-> ##1.” Note that ##1 is not the same as Verilog’s
#1 delay. ##1 means one clock edge (sampling edge). Hence “|-> ##1” means the
same as “|=>.”

Suggestion  To make debugging easier and have project-wide uniformity, use the
overlapping operator in your assertions. Reason? Overlapping is the common
denominator of the two types of operator. You can always model nonoverlapping
from overlapping, but you cannot do vice versa. What this means is that during
debugging, everyone would know that all the properties are modeled using overlap-
ping and that the number of clocks are exactly the same as specified in the property.
You do not have to add or subtract from the # of clocks specified in the chip speci-
fication. More important, if everyone uses his or her favorite operator, debugging
would be very messy not knowing which property uses which operator.

6.7  �Clocking Basics

A concurrent assertion is evaluated only on the occurrence of an “edge,” known as
the “sampling edge.” The reason for continually mentioning this “edge” as “clk” is
because it is best to have this “edge” synchronous to either posedge or negedge for
a signal. You can indeed have an asynchronous edge as well. In Fig. 6.12, we are

6  SystemVerilog Assertions (SVA)

91

Fig. 6.11  Overlapping and nonoverlapping operators

Fig. 6.12  Clocking basics—assertions

6.7 � Clocking Basics

92

using a nonoverlapping implication operator, which means that at a posedge of clk,
if cStart is high, then one clock later sr1 should be executed.

Let us revisit “sampling” of variables. The expression variables cStart, req, and
gnt are all sampled in the preponed region of posedge clk. In other words, if, for
example, cStart=1 and posedge clk changed at the same time, the sampled value of
cStart in the “preponed region” will be equal to “zero” and not “one.” We will soon
discuss what “preponed region” really means in a simulation time tick and how it
affects the evaluation of an assertion, especially when the sampling edge and the
sampled variable change at the same time.

Note again that “sequence sr1” does not have a clock in its expression. The clock
for “sequence sr1” is inherited from the “property pr1.”

6.7.1  �Sampling Edge (Clock Edge)

Now let’s look at one of the most important aspects of clocking mechanism of con-
current assertions.

How does the so-called sampling edge sample the variables in a property or a
sequence is one of the most important concepts you need to understand when
designing assertions. As shown in Fig. 6.13, the important thing to note is that the
variables used in assertions (property/sequence/expression) are sampled in the pre-
poned region. What does that mean? It means, for example, if a sampled variable

Fig. 6.13  Assertion sampling edge and simulation time tick phases

6  SystemVerilog Assertions (SVA)

93

changes the same time as the sampling edge (e.g., clk), then the value of the variable
will be the value it held—before—the clock edge.

@ (posedge clk) a |=> !a;

In the above sequence, let us say that variable “a” changes to “1,” the same time
that the sampling edge clock goes posedge (and assume “a” was “0” before it went
to a “1”). Will there be a match of the antecedent “a”? No! Since “a” went from “0”
to “1” the same time that clock went posedge clk, the sampled value of “a” at
posedge clk will be “0” (in the preponed region) and not “1.” This will not cause the
property to trigger because the antecedent is not evaluated to be true. This will con-
fuse you during debug. You would expect “1” to be sampled and the property trig-
gered at posedge clk. However, you will get just the opposite result.

This is a very important point to understand because in a simulation waveform
(or for that matter with Verilog $monitor or $strobe), you will see a “1” on “a” with
posedge clk and would not understand why the property did not fire or why it failed
(or passed for that matter). Always remember that at the sampling edge, the “previ-
ous” value (i.e., a delta before the sampling edge in the preponed region) of the
sampled variable is used. To reiterate, preponed region is a precursor to the time
slot, where only sampling of the data values take place. No value changes or events
occur in this region. Effectively, sampled values of signals do not change through
the time slot.

6.8  �Concurrent Assertions: Binding Properties

“bind” allows us to keep design logic separate from the assertion logic. Design
managers do not like to see anything in RTL that is not going to be synthesized.
“bind” helps in that direction.

There are three modules (Figs. 6.14 and 6.15). The “designModule” contains the
design. The “propertyModule” contains the assertions/properties that operate on the
logic in “designModule.” And the “test_bindProperty” module binds the property-
Module to the designModule. By doing so, we have kept the properties of the “prop-
ertyModule” separate from the “designModule.” That is the idea behind “bind.” You
do not have to place properties in the same module as the design module. As
mentioned before, you should keep your design void of all constructs that are non-
synthesizable. In addition, keeping assertions and design in separate modules allow
both the design and the DV engineers to work in parallel without restrictions of a
database management system where a file cannot be modified by two engineers at
the same time.

As shown in Fig. 6.15, for “bind” to work, you must declare either the instance
name or the module name of the designModule in the “bind” statement. You need
the design module/instance name, property module name, and the “bind” instance
name for “bind” to work. In our case the design module name is designModule, its
instance name is “dM,” and the property module name is propertyModule.

6.8 � Concurrent Assertions: Binding Properties

94

The (uncommented) “bind” statement uses the module instance “dM” and binds
it to the property module “propertyModule” and gives this “bind” an instance name
“dpM.” It connects the ports of propertyModule with those of the designModule.
With this the “property rc1” in propertyModule will act on designModule ports as
connected.

Fig. 6.14  Binding properties—assertions

Fig. 6.15  Binding properties 2—assertions

6  SystemVerilog Assertions (SVA)

95

The commented “bind” statement uses the module name “designModule” to
bind to the “propertyModule,” whereby all instances of the “designModule” will be
bound to the “propertyModule.”

In essence, we have kept the properties/assertions of the design and the logic of
the design separate. This is the recommended methodology. You could achieve the
same results by putting properties in the same module as the design module but that
is highly non-modular and intrusive methodology. In addition, as noted above, keep-
ing them separate allows both the DV and the design engineer to work in parallel.

6.8.1  �Binding Properties (Scope Visibility)

But what if you want to bind the assertions of the propertyModule to internal signals
of the designModule? That is quite doable.

As shown in Fig. 6.16, “rda” and “rdb” are signals internal to designModule.
These are the signals that you want to use in your assertions in the “propertyMod-
ule.” Hence, you need to make “rda” and “rdb” visible to the “propertyModule.”
However, you do not want to bring “designModule” internal variables to external
ports in order to make them visible to the “propertyModule.” You want to keep the
“designModule” completely untouched. To do that, you need to add input ports to
the “propertyModule” and bind those to the internal signals of the “designModule”
as shown in Fig. 6.16. Note that in our example we bind the propertyModule ports
“pa” and “pb” to the designModule internal registers “rda” and “rdb.” In other
words, you can directly refer to the internal signals of designModule during “bind.”
“bind” has complete scope visibility into the bound module “designModule.” Note
that with this method you do not have to provide the entire hierarchical instance
name when binding to “propertyModule” input ports.

6.9  �Operators

Figure 6.17 shows the operators afforded by the SVA language. These operators are
the gist of the language.

6.9.1  �##m: Clock Delay

Clock delay is about the most basic of all the operators and probably the one you
will use the most! First of all, note that ##m means a delay of “m” number of sam-
pling edges. In this example, the sampling edge is a “posedge clk”; hence, ##m
means m number of posedge clks.

6.9 � Operators

96

Fig. 6.16  “BIND”ing properties. Scope visibility

As shown in Fig. 6.18, the property evaluates antecedent “z” to be true at posedge
clk and implies the sequence “Sab.” “Sab” looks for “a” to be true at that same clock
edge (because of the overlapping operator used in the property) and, if that is true,
waits for two posedge clks and then looks for “b” to be true.

In the simulation log, we see that at time 10, posedge of clk, z==1 and a==1.
Hence, the sequence evaluation continues. Two clks later (at time 30), it checks to
see if b==1, which it finds to be true and the property passes.

Similar scenario unfolds starting time 40. But this time, b is not equal to 1 at time
60 (two clks after time 40), and the property fails.

6  SystemVerilog Assertions (SVA)

97

Operator Description

##m

##[m:n]

Clock delay

[*m]

[*m:n]

Repetition – Consecutive

[=m]

[=m:n]

Repetition – Non-consecutive

[->m]

[-> m:n]

GoTo Repetition – Non-consecutive

sig1 throughout seq1 Signal sig1 must be true throughout sequence
seq1

seq1 within seq2 sequence seq1 must be contained within
sequence s2

seq1 intersect seq2 ‘intersect’ of two sequences; same as ‘and’ but
both sequences must also ‘end’ at the same
time.

seq1 and seq2 ‘and’ of two sequences. Both sequences must
start at the same time but may end at different
times

seq1 or seq2 ‘or’ of two sequences. It succeeds if either
sequence succeeds.

first_match complex_seq1 matches only the first of possibly multiple
matches

not <property_expr> If <property_expr> evaluates to true, then not
<property_expr> evaluates to false; and vice-
versa.

if (expression) property_expr1 else
property_expr2

If…else within a property

|-> Overlapping implication operator

|=> Non-overlapping implication operator

Fig. 6.17  Operators—concurrent assertions

6.9 � Operators

98

6.9.2  �##[m:n]: Clock Delay Range

Since it is quite necessary for a signal or expression to be true in a given range of
clocks (as opposed to fix number of clocks), we need an operator which does just
that.

##[m:n] allows a range of sampling edges (clock edges) in which to check for the
expression that follows it. Figure 6.19 explains the rules governing the operator.
Note that here also, m and n need to be constants. They cannot be variables.

The property “ab” in the figure says that if at the first posedge of clk the “z” is
true, sequence “Sab” will be triggered. Sequence “Sab” evaluates “a” to be true to
the same clock that “z” is true and then looks for “b” to be true delayed by either 1
clk or 2 clks or 3 clks. The very first instance that “b” is found to be true within the
3 clocks, the property will pass. If “b” is not asserted within 3 clks, the property will
fail.

Note that in the figure, you see three passes. That simply means that whenever b
is true the first time within 3 clks, the property will pass. It does not mean that the
property will be evaluated and pass three times. To reiterate, the property will pass
as soon as (i.e., the first time) that b is true.

Fig. 6.18  Clock delay operator ##m

6  SystemVerilog Assertions (SVA)

99

6.9.3  �[*m]: Consecutive Repetition Operator

As depicted in Fig. 6.20, the consecutive repetition operator [*m] sees that the sig-
nal/expression associated with the operator stays true for “m” consecutive clocks.
Note that “m” cannot be $ (infinite # of consecutive repetition).

The important thing to note for this operator is that it will match at the end of the
last iterative match of the signal or expression.

The example in Fig. 6.20 shows that when “z” is true that at the next clock,
sequence “Sc1” should start its evaluation. “Sc1” looks for “a” to be true and then
waits for one clock before looking for two consecutive matches on “b.” This is
depicted in the simulation log. At time 10 “z” is high; at 20 “a” is high as expected
(because of nonoverlapping operator in property); at time 30 and 40, “b” remains
high matching the requirement b[*2]. At the end of the second high on “b,” the
property meets all its requirements and passes.

The very next part of the log shows that the property fails because “b” does not
remain high for two consecutive clocks. Again, the comparison ends at the last
clock where the consecutive repetition is supposed to end, and then the property
fails.

Fig. 6.19  Clock delay range operator ##[m:n]

6.9 � Operators

100

6.9.4  �[*m:n]: Consecutive Repetition Range

Now let’s look at the simulation log (Fig. 6.21). Time 30–90 is straightforward. At
time 30, z=1 and a=1, the next clock “b” = 1 and remains “1” for two consecutive
clocks and then 1 clock later c=1 as required, and the property passes. But what if
“c” was not equal to “1” at time 90? That is what the second set of events shows.

Z=1 and a=1 at time 110 and the sequence Sc1 continues. OK. b=1 the next two
clocks. Correct. But why doesn’t the property end here? Isn’t it supposed to end at
the first match? Well, the reason the property does not end at 150 is because it needs
to wait for c=1 the next clock. OK, so it waits for C=1 at 170. But it does not see a
c=1. Shouldn’t the property now fail? NO. This is where the max range :5 comes
into picture. Since there is a range [*2:5], if the property does not see a c=1 after the
first two consecutive repetitions of “b,” it waits for the next consecutive “b” (total 3
now) and then looks for “c=1.” If it does not see c=1, it waits for the next consecu-
tive b=1 (total 4 now) and then looks for c=1. Still no “c?” It finally waits for max
range fifth b=1 and then the next clock looks for c=1. If it finds one, the property
ends and passes. If not, the property fails.

Fig. 6.20  Consecutive repetition operator [*m]

6  SystemVerilog Assertions (SVA)

101

Continuing with the simulation log, the last part shows how the property would
fail. One way it would fail is what I have described above. The other way is shown
in the log file. I have repeated the log file here to help us concentrate only on that
part of the log file:

250 clk=1 z=1 a=1 b=0 c=0
270 clk=1 z=0 a=0 b=1 c=0
290 clk=1 z=0 a=0 b=1 c=1
310 clk=1 z=0 a=0 b=0 c=0
310 Sc1 FAIL

Fig. 6.21  Consecutive range operator

6.9 � Operators

102

At time 250, z=1 and a=1 so the sequence evaluation continues to consecutive
operator. “b” is equal to 1 for the next two consecutive clocks. Good. But at time
310, b=0 and—also—c=0. Hence, the property fails. After two consecutive “b,”
there should be either a third “b” or a “c=1.” Neither of them is present and the
property fails. If C=1 at time 310, the property would pass. If b=1 and c=0 at time
310, the property would continue to evaluate until it sees 5 consecutive “b” or a c=1
before 5 consecutive “b” are encountered. Or after five consecutive “b,” there is a
c=1 as shown in the previous part of the simulation log file.

6.9.5  �[=m]: Repetition Non-consecutive

Non-consecutive repetition is another useful operator (as the consecutive operator)
and used very frequently. In many applications, we want to check that a signal
remains asserted or de-asserted several times and that we need not know when
exactly these transitions take place. For example, if there is a non-burst READ of
length 8, that you expect 8 RDACK. These RDACK may come in a consecutive
sequence or not (based on read latency). But you must have eight RDACK before
read is done.

Now, just as in the consecutive operator, the qualifying event (shown as ##1 C in
Fig. 6.22) plays a significant role. “##1 c” tells the property that after the last “b,”
“c” must occur once and then it can occur any time after one clock after the last “b.”
Note again that even though we have “##1 c,” “c” does not necessarily need to occur
one clock after the last “b.” It can occur after any # of clks after one clock after the
last “b”—as long as—no other “b” occurs while we are waiting for “c.” Confusing!
Not really. Let us look at the simulation log in Fig. 6.22. That will clarify things.

In the log, a=1 at time 5; b=1 at time 25 and then at 45. So far so good. We are
marching along just as the property expects. Then comes in c=1 at time 75. That
also meets the property requirement that “c” occurs any time after last b=1. BUT
note that before c=1 arrived at time 75, “b” did not go to a “1” after its last occur-
rence at time 45. The property passes. Let us leave this at that for the moment. Now
let us look at the second part of the log.

a=1 at time 95; then b=1 at 105 and 125; we are doing great. Now we wait for
c=1 to occur any time after last “b.” C=1 occurs at time 175. But the property fails
before that!! What is going on? Note b=1 at time 145. That is not allowed in this
property. The property expects a c=1 after the last occurrence of “b” but before any
other b=1 occurs. If another b=1 occurs before c=1 (as at time 145), then all bets are
off. Property does not wait for the occurrence of c=1 and fails as soon as it sees this
extra b=1. In other words, (what I call) the qualifying event “##1 c” encapsulates the
property and strictly checks that b[=2] allows only two occurrences of “b” before
“c” arrives.

6  SystemVerilog Assertions (SVA)

103

6.9.6  �[=m:n]: Repetition Non-consecutive Range

Property in Fig. 6.23 is analogous to the non-consecutive (non-range) property,
except that this has a range. The range says that “b” must occur minimum two times
or maximum five times after which “c” can occur one clock later any time and that
no more than maximum of five occurrences of “b” occur between the last occur-
rence of b=1 and c=1.

Referring to Fig. 6.23, first simulation log (Top left) shows that after a=1 at time
5, b occurs twice (the minimum # of times) at time 15 and 45, and then c=1 at time
75. Why didn’t the property wait for five occurrences of b=1? That is because after
the second b=1 at time 45, c=1 arrives at time 75, and this c=1 satisfies the property
requirement of minimum of two b=1 followed by a c=1. The property passes and
does not need to wait for any further b=1. In other words, the property starts looking
for “c=1” after the minimum required (2) “b==1.” Since it did find a “c=1” after two
“b=1,” the property ends there and passes.

Fig. 6.22  Non-consecutive repetition operator [=m]

6.9 � Operators

104

Similarly, the simulation log on bottom left shows that “b” occurs five (max)
times, and then “c” occurs without any occurrence of b. The property passes. This is
how that works. As explained above, after two “b=1,” the property started looking
for “c==1.” But before the property detects “c==1,” it sees another “b==1.” That’s
OK because “b” can occur maximum of five times. So, after the third “b==1”, the
property continues to look for either “c==1” or “b==1” until it has reached maxi-
mum of five “b==1.” This entire process continues until five “b”s are encountered.
Then the property simply waits for a “c.” While waiting for a “c” at this stage, if a
sixth “b” occurs, the property fails. This failure behavior is shown in simulation log
in the bottom right corner of Fig. 6.23.

Fig. 6.23  Non-consecutive repetition range operator [=m:n]

6  SystemVerilog Assertions (SVA)

105

6.9.7  �[->m] Non-consecutive GoTo Repetition Operator

This is the so-called non-consecutive goto operator! Very similar to [=m] non-
consecutive operator. Note the symbol difference. The goto operator is [->2].

b[->2] acts exactly the same as b[=2]. So, why bother with another operator with
the same behavior? It is the qualifying event that makes the difference. Recall that
the qualifying event is the one that comes after the non-consecutive or the “goto”
non-consecutive operator. I call it qualifying because it is the end event that qualifies
the sequence that precedes for final sequence matching.

The simulation log in Fig. 6.24 shows a PASS and a FAIL scenario. PASS sce-
nario is quite clear. At time 5, a==1, then two non-consecutive “b” occur, and then
exactly one clock after the last “b=1,” “c=1” occurs. Hence, the property passes. The
FAIL scenario shows that after two occurrences of b==1, c==1 does not arrive
exactly one clock after the last occurrence of b=1. That is the reason the b[->2] ##1
c check fails.

Fig. 6.24  Non-consecutive GoTo repetition operator

6.9 � Operators

106

6.9.8  �sig1 throughout seq1

The throughout operator (Fig. 6.25) makes it that much easier to test for condition
(signal or expression) to be true throughout a sequence. Note that the LHS of
throughout operator can only be a signal or an expression, but it cannot be a sequence
(or subsequence). The RHS of throughout operator can be a sequence. So, what if
you want a sequence on the LHS as well? That is accomplished with the within
operator, discussed right after throughout operator.

Let us examine the application in Fig. 6.26 which will help us understand the
throughout operator.

In Fig. 6.26 the antecedent in property pbrule1 requires bMode (burst mode)
signal to fall. Once that is true, it requires checkbMode to execute.

Read the property bottom up. checkbMode makes sure that the bMode stays low
throughout the data_transfer sequence. If bMode goes high before data_transfer is
over, the assertion will fail. The data_transfer sequence requires both dack_ and oe_
to be asserted (active low) and to remain asserted for four consecutive cycles.
Throughout the data_transfer, burst mode (bMode) should remain low.

There are two simulation logs presented in Fig. 6.27. Both are for FAIL cases!
FAIL cases are more interesting than the PASS cases, in this example! The first
simulation log (left hand side) shows $fell(bMode) at time 20. Two clocks later at

Fig. 6.25  throughout operator

6  SystemVerilog Assertions (SVA)

Fig. 6.26  Application: sig1 throughout seq1

Fig. 6.27  sig1 throughout seq1—application simulation log

108

time 40, oe_=0 and dack_=0 are detected. So far so good. oe_ and dack_ retain their
state for three clocks. That’s good too. But in the fourth cycle (time 70), bMode goes
high. That’s a violation because bMode is supposed to stay low throughout the data
transfer sequence, which is four clocks long.

The second simulation log (right hand side) also follows the same sequence as
above, but after three consecutive clocks that the oe_ and dack_ remain low, dack_
goes high at time 160. That is a violation because data_transfer (oe_=0 and dack_=0)
is supposed to stay low for four consecutive cycles.

This also highlights a couple of other important points:

	1.	 Both sides of the throughout operator must meet their requirements. In other
words, if either the LHS or the RHS of the throughout sequence fails, the asser-
tion will fail. Many folks assume that since bMode is being checked to see that
it stays low (in this case), bMode fails only if the assertion will fail. Not true as
we see from the two failure logs.

	2.	 Important point: To make it easier for the reader to understand this burst mode
application, I broke it down into two distinct subsequences. But what if someone
just gave you the timing diagram and asked you to write assertions for it?

Break down any complex assertion requirement into smaller chunks. This is
probably the most important advice I can part to the reader. If you look at the entire
AC protocol (the timing diagram) as one monolithic sequence, you will indeed make
mistakes and spend more time debugging your own assertion then debugging the
design under test.

6.9.9  �seq1 within seq2

Analogous to throughout, the within operator (Fig. 6.28) sees if one sequence is
contained within or of the same length as another sequence. Note that the through-
out operator allowed only a signal or an expression on the LHS of the operator.
within operator allows a sequence on both the LHS and RHS of the operator.

The property “within” ends when the larger of the two sequences end, as shown
in Fig. 6.28.

6.9.10  �seq1 and seq2

As the name suggests, and operator (Fig. 6.29) expects both the LHS and RHS side
of the operator and to evaluate to true. It does not matter which sequence ends first
as long as both sequences meet their requirements. The property ends when the
longer of the two sequences ends. But note that both the sequences must start at the
same time.

6  SystemVerilog Assertions (SVA)

109

Fig. 6.28  within operator

Fig. 6.29  “and” operator

6.9 � Operators

110

The and operator is very useful, when you want to make sure that certain
concurrent operations in your design start at the same time and that they both com-
plete/match satisfactorily. As an example, in the processor world, when a Read is
issued to L2 cache, L2 will start a tag match and issue a DRAM Read at the same
time, in anticipation that the tag may not match. If there is a match, it will abort the
DRAM Read. So, one sequence is to start tag compare, while another is to start a
DRAM Read (ending in DRAM Read Complete or Abort). The DRAM Read
sequence is designed such that it will abort as soon as there is a tag match. This
way we have made sure that both sequences start at the same time and that they
both end.

6.9.11  �seq1 or seq2

or of two sequences means that when either of the two sequences match its require-
ments that the property will pass. Please refer to Fig. 6.30 and examples that follow
to get a better understanding.

The feature to note with or is that as soon as either of the LHS or RHS sequence
meets, its requirements are that the property will end. This contrasts with and where
only after the longest sequence ends that the property is evaluated.

Note also that if the shorter of the two sides fails, the sequence will continue to
look for a match on the longer sequence.

6.9.12  �seq1 intersect seq2

So, with throughout, within, and, and or operators, who needs another operator that
also seems to verify that sequences match?

Fig. 6.30  “or” operator

6  SystemVerilog Assertions (SVA)

111

throughout or within or and or or does not make sure that both the LHS and RHS
sequences of the operator are exactly the same. They can be of the same length, but
the operators do not care as long as the signal/expression or sequence meets their
requirements. That’s where intersection operator (Fig. 6.31) comes into picture. It
makes sure that the two sequences indeed start at the same time and end at the same
time and satisfy their requirements. In other words, they intersect.

As you can see, the difference between and and intersect is that intersect requires
both sequences to be of the same length and that they both start at the same time and
end at the same time, while and can have the two sequences of different lengths.

6.10  �Local Variables

This is a very brief introduction to local variables. Please refer to (Mehta 2016) for
complete detail and examples on this topic. Without the dynamic multi-threaded
semantics and features of local variables, many of the assertions would be impos-
sible to write.

Fig. 6.31  intersect operator

6.10 � Local Variables

112

Local variable is a feature you are likely to use very often. They can be used both
in a sequence and a property. They are called local because they are indeed local to
a sequence and are not visible or available to other sequences or properties.
Figure 6.32 points out key elements of a local var. The most important and useful
aspect of a local variable is that it allows multi-threaded application and creates a
new copy of the local variable with every instance of the sequence in which it is
used. User does not need to worry about creating copies of local variables with each
invocation of the sequence. Above application says that whenever “RdWr” is sam-
pled high at a posedge clk, “rData” is compared with “wData” five clocks later. The
example shows how to accomplish this specification. Local variable “int local_data”
stores the “rData” at posedge of clk and then compares it with wData five clocks
later. Note that “RdWr” can be sampled true at every posedge clk. Sequence “data_
check” will enter every clock, create a new copy of local_data, and create a new
pipelined thread that will check for local_data+’hff with “wData” five clocks later.

Fig. 6.32  Local variables—basics

6  SystemVerilog Assertions (SVA)

113

Note that the sampled value of a local variable is defined as the current value (not
the value in the preponed region).

Moving along, Fig. 6.33 shows other semantics of local variables. Pay close
attention to the rule that local variable must be attached to an expression, while
comparison cannot be attached to an expression!!

In this example, “local_data=rData” is attached to the sequence “rdC.” In other
words, assignment “local_data=rData” will take place only on completion of
sequence “rdC.” But what if you don’t have an expression to attach to the local vari-
able when you are storing a value? Use 1’b1 (always true) as an expression. That
will mean whenever you enter a sequence, the expression is always true, and you
should store the value in the local variable. Simple!

Fig. 6.33  Local variables—do’s and don’ts

6.10 � Local Variables

114

Note that local variables do not have default initial values. A local variable
without an initialization assignment will be unassigned at the beginning of the eval-
uation attempt. The expression of an initialization assignment to a given local vari-
able may refer to a previously declared local variable. In this case the previously
declared local variable must itself have an initialization assignment, and the initial
value assigned to the previously declared local variable will be used in the evalua-
tion of the expression assigned to the given local variable.

The detailed discussion of local variables is beyond the scope of this book. Please
refer to (Mehta 2016) for in-depth discussion.

6.11  �SystemVerilog Assertions: Applications

6.11.1  �SVA Application: Infinite Delay Range Operator

In this example (Fig. 6.34), we expect “tErrorBit” to rise in a certain range of clock
delays. The figure explains how the assertion works. Note also that you could use
“&&” in place of ##0 to achieve the same results. Since assertions are mainly tem-
poral domain, I prefer to tie in everything with temporal domain constructs. But
that’s a matter of preference.

Note also the following two semantically equal statement but with different syn-
tax. These are short forms:

–– ##[*] is used as an equivalent representation of ##[0:$].
–– ##[+] is used as an equivalent representation of ##[1:$].

Fig. 6.34  Concurrent assertions—application

6  SystemVerilog Assertions (SVA)

115

6.11.2  �SVA Application: Consecutive Delay Range Operator

Figure 6.35 depicts the following application.
A PCI cycle starts when FRAME_ is asserted (goes low) and the CMD is valid.

A CMD == 4’b0001 specifies the start of a PCI special cycle. On the start of such a
cycle (i.e., the antecedent being true), the consequent looks for DEVSEL_ to be
high forever consecutively at every posedge clk until FRAME_ is de-asserted (goes
high). This is by far the easiest way to check for an event/expression to remain true
(and we do not know for how long) until another condition/expression is true (i.e.,
until what I call the qualifying event is true).

Note also that you can mix edge-sensitive and level-sensitive expressions in a
single logic expression. That is indeed impressive and useful.

6.11.3  �SVA Application: Consecutive Delay Range Operator

Property in Fig. 6.36 says that at $rose(tagError), check for tErrorBit to remain
asserted until mCheck is asserted. If tErrorBit does not remain asserted until
mCheck gets asserted, the property should fail.

So, at $rose(tagError) and one clock later, we check to see that $rose(tErrorBit)
occurs. If it does, then we move forward at the same time (##0) with tErrorBit[*1:$].
This says that we check to see that tErrorBit remains asserted consecutively (i.e., at
every posedge clk) until the qualifying event $rose(mCheck) arrives. In other words,

Fig. 6.35  SVA Application—consecutive delay range operator

6.11 � SystemVerilog Assertions: Applications

116

the qualifying event is what makes consecutive range operator very meaningful as
well as useful. Think of the qualifying event as the one that ends the property. This
way, you can check for some expression to be true until the qualifying event occurs.

6.11.4  �SVA Application: Antecedent as Property Check.
Consequent as Hard Failure

Property in Fig. 6.37 states that if the currentState of the state machine is not IDLE
and if the currentState remains stable for 32 clocks, the property should fail.

There are a couple of points to observe.
Note that the entire expression ((currentState != IDLE) && $stable(currentState))

is checked for consecutive repetition of 32 times because we need to check at every
clock for 32 clocks that the currentState is not IDLE, and whatever state that existed
in previous clock still remains the same (i.e., $stable). In other words, you must
make sure that within these 32 clocks, the currentState does not go back to IDLE. If
it does, then the antecedent does not match, and it will start all over again to check
for this condition to be true (i.e., the antecedent to be true).

Note that if the antecedent is indeed true, it would mean that the state machine is
stuck into the same state for 32 clocks. In such a case, we want the assertion to fire.
That is taken care of by a hard failure in the consequent. We simply program conse-
quent to fail without any prerequisite.

Fig. 6.36  SVA Application—consecutive delay range operator

6  SystemVerilog Assertions (SVA)

117

As you notice, this property is unique in that the condition is checked for in the
antecedent. The consequent is simply used to declare a failure.

6.11.5  �SVA Application: State Transition Check of a State
Machine

This application (Fig. 6.38) states that the state machine matches the state transition
specification. If we are in `readStart state after one clock, the state machine should
be in `readID state and stay in that state until the state machine reaches `readData
state. It then is expected to stay in `readData state until `readEnd arrives. In short,
we have made sure that the state machine does not stray and do an illegal transition
until it reaches `readEnd.

Note the use of `define to establish temporal relationship between signals and
states. This makes the code very readable.

Here’s the source code showing a simple testbench, the checkReadStates asser-
tion, and simulation log:

module state_transition;
int readStartState, readIDState, readDataState, readEndState;
logic clk, read_enb;

`define readStart (read_enb ##1 readStartState)
`define readID (readStartState ##1 readIDState)

Fig. 6.37  Concurrent assertions—application

6.11 � SystemVerilog Assertions: Applications

118

`define readData (readIDState ##1 readDataState)
`define readEnd (readDataState ##1 readEndState)

property checkReadStates;
 @(posedge clk)
 `readStart ##1
 `readID [*1:$] ##1
 `readData[*1:$] ##1
 `readEnd ;
endproperty

sCheck: assert property (checkReadStates) else $display
($stime,,,"FAIL");
cCheck: cover property (checkReadStates) $display ($stime,,,"PASS");

initial
begin
 read_enb=1; clk=0;
 @(posedge clk) readStartState=1;
 @(posedge clk) @(posedge clk); readIDState=1;
 @(posedge clk) @(posedge clk); readDataState=1;
 @(posedge clk) @(posedge clk); readEndState=1;

end

Fig. 6.38  Concurrent assertions—application

6  SystemVerilog Assertions (SVA)

119

initial $monitor($stime,,,"clk=",clk,
 "read_enb=%0b",read_enb,,,
 "readStartState=%0b",readStartState,,
 "readIDState=%0b",readIDState,,
 "readDataState=%0b",readDataState,,
 "readEndState=%0b",readEndState);

always #10 clk=!clk;

endmodule

/*
#	 0	 clk=0 read_enb=1readStartState=0 readIDState=0
readDataState=0 readEndState=0
#	 10	 clk=1 read_enb=1	 readStartState=1 readIDState=0
readDataState=0 readEndState=0
#	 20	 clk=0 read_enb=1	 readStartState=1 readIDState=0
readDataState=0 readEndState=0
#	 30	 clk=1 read_enb=1	 readStartState=1 readIDState=0
readDataState=0 readEndState=0
#	 40	 clk=0 read_enb=1	 readStartState=1 readIDState=0
readDataState=0 readEndState=0
#	 50	 clk=1 read_enb=1	 readStartState=1 readIDState=1
readDataState=0 readEndState=0
#	 60	 clk=0 read_enb=1	 readStartState=1 readIDState=1
readDataState=0 readEndState=0
#	 70	 clk=1 read_enb=1	 readStartState=1 readIDState=1
readDataState=0 readEndState=0
#	 80	 clk=0 read_enb=1	 readStartState=1 readIDState=1
readDataState=0 readEndState=0
#	 90	 clk=1 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=0
#	 100	 clk=0 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=0
#	 110	 clk=1 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=0
#	 120	 clk=0 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=0
#	 130	 clk=1 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=1
#	 140	 clk=0 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=1
150PASS

6.11 � SystemVerilog Assertions: Applications

120

#	 150	 clk=1 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=1
#	 160	 clk=0 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=1
#	 170 PASS
#	 170	 clk=1 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=1
#	 180	 clk=0 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=1
#	 190 PASS
#	 190	 clk=1 read_enb=1	 readStartState=1 readIDState=1
readDataState=1 readEndState=1
*/

6.11.6  �SVA Application: Multi-threaded Operation

This is a very interesting behavior of multi-threaded assertions (Fig. 6.39). This is
something you need to understand.

Fig. 6.39  Multi-threading—concurrent assertions

6  SystemVerilog Assertions (SVA)

121

At s1, “rdy” is high and the antecedent is true. That implies that “rdyAck” be true
within the next 5 clks. s1 thread starts looking for “rdyAck” to be true. The very
next clock, rdyAck, is not yet true, but luck has it that “rdy” is indeed true at this
next clk (s2). This will fork off another thread that will also wait for “rdyAck” to be
true within the next 5 clks. The “dyAck” comes along within 5 clks from s1, and that
thread is satisfied and will pass.

But the second thread will also pass at the same time, because it also got its
rdyAck within the 5 clks that it was waiting for.

This is a –very- important point to understand. The range operator can cause
multiple threads to complete at the same time, giving you false positive. This con-
trasts with what we saw earlier with ##m constant delay where each thread will
always complete only after the fixed ##m clock delays. There is a separate end to
each separate thread. With the range delay operator, multiple threads can end at the
same time.

Important  Let us further explore this concept since it can indeed lead to false
positive. How would you know if rdyAck that satisfied both “rdy”s is for which
“rdy?” Also, if you did not receive “rdyAck” for the second “rdy,” you will indeed
get a false positive.

One hint is to keep the antecedent an edge-sensitive function. For example, in the
above example, instead of “@ (posedge clk) rdy” we could have used “@ (posedge
clk) $rose(rdy)” which would have triggered the antecedent only once, and there
won’t be any confusion of multiple threads ending at the same time. This is a per-
formance hint as well. Use edge-sensitive-sampled value functions whenever pos-
sible. Level-sensitive antecedent can fork off unintended multiple threads affecting
simulation performance.

But a better solution is to use local variables to ID each “rdy” and “rdyAck.” This
will indeed make sure that you received a “rdyAck” for each “rdy” and that each
“rdyAck” is associated with the correct “rdy.”

You don’t need to understand local variables (which are scantly covered in this
book) in detail to understand the following example. Local variables are dynamic
variables. Each instance of a sequence forks off another independent thread. Very
powerful feature. You don’t need to keep track of the pipelined behavior. The local
variable does it for you. Having understood that, you should be able to follow the
following example.

Problem statement:
To recap our problem definition, two “rdy” signals are asserted on consecutive

clocks with a range of clocks during which a “rdyack” must arrive. “rdyack” arrives
that satisfies the time range requirements for both “rdy”s and the property passes.
We have no idea whether a “rdyack” arrived for each “rdy.” The PASS of the asser-
tion does not guarantee that.

6.11 � SystemVerilog Assertions: Applications

122

First, let us simulate the problem definition. The following code simulates the
property and shows that both instances of “rdy” will indeed PASS with a single
“rdyAck”:

module range_problem;
logic clk, rdy, rdyAck;
initial
begin
 clk=1'b0; rdy=0; rdyAck=0;
 #500 $finish(2);
end
always begin
 #10 clk=!clk;
end

initial
begin
 repeat (5) begin @(posedge clk) rdy=~rdy; end
end

initial $monitor($stime,,,"clk=",clk,,,"rdy=",rdy,,,"rdyAck=",rdy
Ack);
initial
begin
 repeat (4) begin @(posedge clk); end
 rdyAck=1;
end

sequence rdyAckCheck;
 (1'b1, $display($stime,,,"ENTER SEQUENCE rdy ARRIVES")) ##[1:5]
($rose(rdyAck),$display($stime,,,"rdyAck ARRIVES"));
endsequence

gcheck: assert property (@(posedge clk) $rose (rdy) |-> rdyAck-
Check) begin $display($stime,,,"PASS"); end
 else begin $display($stime,,,"FAIL"); end

endmodule

/* Simulation log
0 clk=0 rdy=0 rdyAck=0
#	 10 clk=1 rdy=1 rdyAck=0
#	 20 clk=0 rdy=1 rdyAck=0
#	 30 ENTER SEQUENCE rdy ARRIVES Á First ‘rdy’ is detected

6  SystemVerilog Assertions (SVA)

123

#	 30 clk=1 rdy=0 rdyAck=0
#	 40 clk=0 rdy=0 rdyAck=0
#	 50 clk=1 rdy=1 rdyAck=0
#	 60 clk=0 rdy=1 rdyAck=0
#	 70 ENTER SEQUENCE rdy ARRIVES Á Second ‘rdy’ is detected
#	 70 clk=1 rdy=0 rdyAck=1
#	 80 clk=0 rdy=0 rdyAck=1
#	 90 clk=1 rdy=1 rdyAck=1
#	 90 rdyAck ARRIVES Á ‘rdyack’ detected for both ‘rdy’s
and the property PASSes.
#	 90 PASS
*/

The following code shows the solution using local variables:

module range_solution;
logic clk, rdy, rdyAck;
byte rdyNum, rdyAckNum;

initial
begin
 clk=1'b0; rdy=0; rdyNum=0; rdyAck=0; rdyAckNum=0;
 #500 $finish(2);
end
always
begin
 #10 clk=!clk;
end
initial
begin
 repeat (4)
 begin
 @(posedge clk) rdy=0;
 @(posedge clk) rdy=1; rdyNum=rdyNum+1;
 end
end

initial $monitor($stime,,,"clk=",clk,,,"rdy=",rdy,,,"rdyNum=",rdy
Num,,,"rdyAckNum",rdyAckNum,,,"rdyAck=",rdyAck);
always
begin
 repeat (4)
 begin
 @(posedge clk); @(posedge clk); @(posedge clk);
 rdyAck=1; rdyAckNum=rdyAckNum+1;

6.11 � SystemVerilog Assertions: Applications

124

 @(posedge clk) rdyAck=0;
 end
end

sequence rdyAckCheck;
byte localData; /*local variable ‘localData’ declaration. Note
this is a dynamic variable. For every entry into the sequence it
will create a new instance of localData and follow an independent
thread.*/

 (1'b1,localData=rdyNum, $display($stime,,,"ENTER
SEQUENCE",,,"LOCAL rdyNum=", localData))

##[1:5]

((rdyAck && rdyAckNum==localData),
$display($stime,,,"rdyAck ARRIVES ",,,"LOCAL",,,"rdyNum=",localD
ata,,, "rdyAck=",rdyAckNum));
endsequence

gcheck: assert property (@(posedge clk) $rose (rdy) |-> rdyAck-
Check) begin $display($stime,,,"PASS"); end
else begin $display($stime,,,"FAIL",,,"rdyNum=",rdyNum,,,"rdyAckN
um=",rdyAckNum); end

endmodule

/* Simulation Log
#	 0 clk=0 rdy=0 rdyNum= 0 rdyAckNum 0 rdyAck=0
#	 10 clk=1 rdy=0 rdyNum= 0 rdyAckNum 0 rdyAck=0
#	 20 clk=0 rdy=0 rdyNum= 0 rdyAckNum 0 rdyAck=0
#	 30 clk=1 rdy=1 rdyNum= 1 rdyAckNum 0 rdyAck=0
#	 40 clk=0 rdy=1 rdyNum= 1 rdyAckNum 0 rdyAck=0
#	 50 ENTER SEQUENCELOCAL rdyNum= 1 Á First ‘rdy’ arrives. A
‘rdyNum’ (generated in your testbench as shown above) is assigned
to ‘localData’. This ‘rdyNum’ is a unique number for each invoca-
tion of the sequence and arrival of ‘rdy’.

#	 50 clk=1 rdy=0 rdyNum= 1 rdyAckNum 1 rdyAck=1
#	 60 clk=0 rdy=0 rdyNum= 1 rdyAckNum 1 rdyAck=1
#	 70 rdyAck ARRIVES LOCALrdyNum= 1rdyAck= 1

6  SystemVerilog Assertions (SVA)

125

#	 70 PASS Á When ‘rdyAck’ arrives, the sequence checks to
see that its ‘rdyAckNum’ (again, assigned in the testbench) cor-
responds to the first rdyAck. If the numbers do not match the prop-
erty fails. Here they are indeed the same and the property PASSes.

#	 70 clk=1 rdy=1 rdyNum= 2 rdyAckNum 1 rdyAck=0
#	 80 clk=0 rdy=1 rdyNum= 2 rdyAckNum 1 rdyAck=0
#	 90 ENTER SEQUENCELOCAL rdyNum= 2 Á Second ‘rdy’ arrives.
localData is assigned the second ‘rdyNum’. This redNum will not
overwrite the first rdyNum. Instead a second thread is forked off
and ‘localData’ will maintain (store) the second ‘rdyNum’.

#	 90 clk=1 rdy=0 rdyNum= 2 rdyAckNum 1 rdyAck=0
#	 100 clk=0 rdy=0 rdyNum= 2 rdyAckNum 1 rdyAck=0
#	 110 clk=1 rdy=1 rdyNum= 3 rdyAckNum 1 rdyAck=0
#	 120 clk=0 rdy=1 rdyNum= 3 rdyAckNum 1 rdyAck=0
#	 130 ENTER SEQUENCELOCAL rdyNum= 3
#	 130 clk=1 rdy=0 rdyNum= 3 rdyAckNum 2 rdyAck=1
#	 140 clk=0 rdy=0 rdyNum= 3 rdyAckNum 2 rdyAck=1
#	 150 rdyAck ARRIVES LOCALrdyNum= 2rdyAck= 2
#	 150 PASS Á When ‘rdyAck’ arrives, the sequence checks to
see that its ‘rdyAckNum’ (again, assigned in the testbench) cor-
responds to the second rdyAck. If the numbers do not match the
property fails. Here they are indeed the same and the property
PASSes. This is what we mean by pipelined behavior, in that, the
second invocation of the sequence maintains its own copy of ‘local-
Data’ and compares with the second ‘rdyAck’. This way there is no
question of which ‘rdy’ was followed by which ‘rdyAck’. No false
positive. Rest of the simulation log follows the same chain of
thought.

Can you figure out why the property fails at #270? Hint: Start
counting clocks at time #170 when fourth ‘rdy’ arrives. Did a ‘rdy-
Ack’ arrive for that ‘rdy’?

#	 150 clk=1 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
#	 160 clk=0 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
#	 170 ENTER SEQUENCELOCAL rdyNum= 4
#	 170 clk=1 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
#	 180 clk=0 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
#	 190 clk=1 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
#	 200 clk=0 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
#	 210 clk=1 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=1
#	 220 clk=0 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=1

6.11 � SystemVerilog Assertions: Applications

126

#	 230 rdyAck ARRIVES LOCALrdyNum= 3rdyAck= 3
#	 230 PASS

#	 230 clk=1 rdy=1 rdyNum= 4 rdyAckNum 3rdyAck=0
#	 240 clk=0 rdy=1 rdyNum= 4 rdyAckNum 3rdyAck=0
#	 250 clk=1 rdy=1 rdyNum= 4 rdyAckNum 3rdyAck=0
#	 260 clk=0 rdy=1 rdyNum= 4 rdyAckNum 3rdyAck=0
#	 270 FAILrdyNum= 4rdyAckNum= 3

#	 270 clk=1 rdy=1 rdyNum= 4 rdyAckNum 3rdyAck=0
#	 280 clk=0 rdy=1 rdyNum= 4 rdyAckNum 3rdyAck=0
#	 290 clk=1 rdy=1 rdyNum= 4 rdyAckNum 4rdyAck=1
*/

Sequence “rdyAckCheck,” in the above code, is explained as follows.
Upon entry in the sequence, a copy of localData is created and a rdyNum is

stored into it. While the sequence is waiting for #[1:5] for the rdyAck to arrive,
another “rdy” comes in, and sequence “rdyAckCheck” is invoked. Again, the local-
Data is assigned the next rdyNum and stored. This is where dynamic variable
concept comes into picture. The second store of rdyNum into localData does not
clobber the first store. A second copy of the localData is created, and its thread will
also now wait for #[1:5]. This way we make sure that for each “rdy” we will indeed
get a unique “rdyAck.” Please carefully examine the simulation log to see how this
works. I’ve placed comments in the simulation log to explain the operation.

Detail of local variables is beyond the scope of this book. Please refer to (Mehta
2016) book to fully understand the semantic of local variables.

6.11.7  �SVA Application: A Request ⇔ Grant Bus Protocol

Refer to Fig. 6.40

6.11.8  �SVA Application: Machine Check Exception

Property in Fig. 6.41 says that at $rose(tagError), check for tErrorBit to remain
asserted until mCheck is asserted. If tErrorBit does not remain asserted until
mCheck gets asserted, the property should fail.

So, at $rose(tagError) and one clock later, we check to see that $rose(tErrorBit)
occurs. If it does, then we move forward at the same time (##0) with tErrorBit[*1:$].
This says that we check to see that tErrorBit remains asserted consecutively (i.e., at
every posedge clk) until the qualifying event $rose(mCheck) arrives. In other words,
the qualifying event is what makes consecutive range operator very meaningful as

6  SystemVerilog Assertions (SVA)

127

Fig. 6.40  Concurrent assertions—application

Fig. 6.41  SVA Application: machine check exception

6.11 � SystemVerilog Assertions: Applications

128

well as useful. Think of the qualifying event as the one that ends the property. This
way, you can check for some expression to be true until the qualifying event occurs.

6.11.9  �SVA Application: “req” followed by “ack”

Refer to Fig. 6.42

Fig. 6.42  SVA Application: “req” followed by “ack”

6  SystemVerilog Assertions (SVA)

129© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_7

Chapter 7
SystemVerilog Functional Coverage (SFC)

Chapter Introduction
SystemVerilog functional coverage (SFC) is another important component that falls
within SystemVerilog. In this chapter, we will discuss the difference between code
and functional coverage and SFC fundamentals such as “covergroup,” “coverpoint,”
“cross,” “transition,” etc. along with complete examples.

7.1  �Difference Between Code Coverage and Functional
Coverage

Ah, so you have done everything to check the design. But what have you done to
check your testbench? How do you know that your testbench has indeed covered
everything that needs to be covered? That’s where functional coverage comes into
picture. But first let us make sure we understand the difference between the good
old code coverage and the new functional coverage methodology.

•	 Code Coverage

–– Measures coverage of design structure (branch, expression, state transition,
etc.)

•	 Tool specific and derived automatically (not user specified)

–– But does not cover the intent of the design

–– RTL Code with bug :: 	 OUT = CTRL ? R1 : R2;
–– RTL Code without bug :: OUT = CTRL ? R2 : R1;

•	 Code coverage won’t catch this functional bug

•	 Functional Coverage

130

–– Functional coverage is based on the design’s functional specification (user
specified).

–– It measures coverage of the design intent. For example:
–– Control-oriented coverage

•	 Have I exercised all possible protocols that read cycle supports (burst, non-
burst, etc.)?

•	 Transition coverage

–– Did we issue transactions that access Byte followed by Qword followed
by multiple Qwords (use SystemVerilog transition coverage)?

–– A Write to L2 is followed by a read from the same address (and vice
versa). Again, the transition coverage will help you determine if you
have exercised this condition.

•	 Cross coverage

–– Tag and Data Errors must be injected at the same time (use SystemVerilog
cross coverage).

–– Data-oriented coverage

•	 Have we accessed cache lines at all granularity levels (odd bytes, even
bytes, word, quadword, full cache line, etc.)?

7.2  �SystemVerilog Components for Complete Coverage

First let us examine the components of SystemVerilog language that contribute to
functional coverage (Fig. 7.1).

The first component of the complete coverage picture is the “cover” statement
associated with an assertion. This “cover” statement allows us to measure sequential
domain functional coverage. Recall that “assert” checks for failures in your design,
and “cover” sees if the property did get exercised (i.e., got covered). Pure combina-
torial coverage is not sufficient. What I call “low-level” sequential conditions such
as every req should be followed by a gnt-type sequential assertion. If this assertion
does not fail, it could be because the logic is correct or because you never really
asserted “req” to start with. The “cover” completes this story. We “cover” exactly
the same property that we “assert.” In the req/gnt example, if “cover” passes we
know that the property did get exercised by the testbench, and it did not fail (if
“assert” did not fail).

The second component is the functional coverage language which is the gist of
this section. Functional coverage allows you to specify the “function” you want to
cover via the so-called coverpoints and covergroups. More importantly, it also
allows you to measure transition as well as cross coverage to see that we have
indeed covered finer details of our design. This section will clarify all this.

7  SystemVerilog Functional Coverage (SFC)

131

Note that code coverage is still important. It will cover structural coverage of the
design, for example, states of a state machine, conditional coverage, branch cover-
age, line coverage, etc. We are all familiar with code coverage; hence I’ll leave it at
that.

7.3  �Assertion (ABV) and Functional Coverage (SFC)-Based
Methodology

Here are high-level points for an automated robust project methodology:

•	 Your test plan is (obviously) based on what functions you want to test (i.e.,
cover).

•	 So, create a Functional Cover Matrix based on your test plan that includes each
of the functions (control and data) that you want to test.

–– Identify in this matrix all your functional covergroups/coverpoints (more on
that coming soon)

–– Measure their coverage during verification/simulation process

You may even automate updating the matrix directly from the coverage reports.
That methodology is depicted in Fig. 7.2. Measure the effectiveness of your tests

Fig. 7.1  ASIC design functional coverage methodology

7.3 � Assertion (ABV) and Functional Coverage (SFC)-Based Methodology

132

from the coverage reports. The following points are indeed the gist of what func-
tional coverage allows you to accomplish.

–– For example, if your tests are accessing mostly 32-byte granules in your cache
line, you will see byte, word, quadword coverage low, or not covered. Change or
add new tests to hit bytes/words, etc. Use constrained random methodology to
narrow down the target of your tests. Constrained random is a very powerful
methodology and goes hand in hand with functional coverage. Complete descrip-
tion of constrained random is beyond the scope of this book.

–– Or that the tests do not fire transactions that access Byte followed by Qword fol-
lowed by multiple Qwords. Check this with transition coverage.

–– Or that Tag and Data Errors must be injected together at some point in time
(cross coverage between Tag and Data Errors)

–– “Cover” sequential domain assertions.
–– And add more coverpoints for critical functional paths through design.

–– For example, a Write to L2 is followed by a read from the same address and
that this happens from both processors in all possible write/read
combinations.

–– Remember to update your functional cover plan as verification progresses.

Fig. 7.2  Automated coverage-driven design verification methodology

7  SystemVerilog Functional Coverage (SFC)

133

–– Just because you created a plan in the beginning of the project, it does not
mean it’s an end in all.

–– As your knowledge of the design and its corner cases increase, so should the
exhaustiveness of your test plan and the functional cover plan.

–– Continue to add coverpoints for any function that you didn’t think of at the
onset.

Figures 7.2 and 7.3 show an assertion- and coverage-driven methodology.

	1.	 For every “assert” in a property, have an associated “cover.” Give meaningful
names to the property and assert labels.

	2.	 Create a properties table which automatically reads in your assertion description
and creates a fail/covered matrix. If the assertion fails, well, fill in the fail col-
umn. If it not and if it gets covered, fill in the covered column. How do we fill in
this matrix? Read on….

	3.	 Create a functional coverage plan with covergroup and coverpoint. Again, give
meaningful names to covergroup and coverpoint(s).

	4.	 Create a coverage table that automatically derives the covergroup/coverpoint
names from step 3 and creates a matrix for “covered” results. This matrix is for
those functions that are not covered by assertion “cover” nor are they covered by

Fig. 7.3  Coverage- and assertion-driven design verification methodology

7.3  Assertion (ABV) and Functional Coverage (SFC)-Based Methodology

134

code coverage. So, you need to carefully design your covergroups and cover-
points. Do not cover what’s already covered by code coverage.

	5.	 Simulate your design with assertions and functional cover groups.
	6.	 Simulation will create a “coverage database.” This database has all the informa-

tion about failed assertions, “covered” properties, and covered covergroups and
coverpoints.

	7.	 Using EDA vendor provided API, shift through this database and update the
properties table and coverage table.

	8.	 Loop back.

The advantage of such methodology is that you continually know if you are spin-
ning the wheel without increasing coverage. Without such continual measure, you
may keep simulating; bugs don’t get reported; you start feeling comfortable only to
realize later that the functional coverage was inadequate. You were basically run-
ning the tests that target the same logic repeatedly. If you have a methodology as
described above, you will have a correct notion of what functional logic to target to
increase bug rate.

7.3.1  �Follow the Bugs!

•	 So, when do you start collecting coverage?

–– Code and functional coverage add to simulation overhead.
–– So, don’t turn on code/functional coverage at the very “beginning” of the

project.
–– But what does “beginning” of the project mean? When does the “beginning”

end?

•	 That’s where the bugs come into picture!

–– Create bug report charts.
–– During the “beginning” time, bug rate will (should) be high. All low-hanging

fruits are being picked. ☺
–– When the bug rate starts to drop, the “beginning” has come to an “end.”
–– That’s when your existing test strategy is running out of steam. ☺
–– That’s when you start code and functional coverage to determine:

•	 If new tests are simply exercising the same logic repeatedly
•	 And which part of logic is not yet covered

–– Develop tests for the uncovered functionality. Use constrained random
methodology.

–– Your bug rate will again go up (guaranteed! ☺).

7  SystemVerilog Functional Coverage (SFC)

135

7.4  �SystemVerilog “Covergroup” Basics

Here is a basic example to give you a flavor of the language syntax/semantics. Let’s
see what’s a covergroup.

•	 “Covergroup” is a user-defined type that allows you to collectively sample all
those variables/transitions/cross that are sampled at the same clock (sampling)
edge.

•	 “The ‘covergroup’ construct encapsulates the specification of a coverage model.”
•	 A “covergroup” can be defined in a “package,” “a module,” a “program,” an

“interface,” or a “class.”

Figure 7.4 is self-explanatory with its annotations. Key syntax of the covergroup
and coverpoint is pointed out. A few points to reiterate are as follows:

	1.	 Covergroup without a coverpoint is useless, and the compiler won’t give an error
(at least the simulators that the author has tried).

	2.	 Covergroup, as the name suggests, is a group of coverpoints, meaning you can
have multiple coverpoints in a covergroup.

	3.	 You must instantiate the covergroup.
	4.	 You may provide (not mandatory) a sampling edge to determine when the cover-

points in a covergroup get sampled. If the clocking event is omitted, you must
procedurally trigger the coverage sample window using a built-in method called
sample().

	5.	 A “covergroup” can be declared in:

bit [1:0] offset;
logic [7:0] addr;

endgroup

g1 g1_inst = new;g1 g1_inst = new;

covergroup g1 @(posedge clk);

oc : coverpoint offset;
ac : coverpoint addr;

Declare coverpoint(s): Instantiate a covergroup:
You have to instantiate a
covergroup using the new
operator.

End a covergroup

Clock (or not) the covergroup:

(endgroup)

An explicit clocking event is specified. It
defines the event at which the coverage points
are sampled.

Covergroup can contain one or more coverpoint

Note that covergroup -without- a coverpoint is useless. You won’t get a compile error, but there is nothing
to cover without a coverpoint. More on coverpoints later....

If the clocking event is omitted, you must
procedurally trigger the coverage sampling
using the built- in sample() method....
discussed later....

Declare a covergroup:
‘g1’ is the name of the
covergroup (required).

coverpoint variables.

‘oc’ and ‘ac’ are the labels for the coverpoints
(optional).

‘offset’ and ‘addr’ are

Fig. 7.4  Covergroup basics

7.4  SystemVerilog “Covergroup” Basics

136

	a.	 Package
	b.	 Interface
	c.	 Module
	d.	 Program
	e.	 Class (We’ll see an example soon.)

Other points are annotated in Fig. 7.4. Carefully study them so that the rest of the
chapter is easier to digest.

7.5  �SystemVerilog “Coverpoint” Basics

•	 A coverpoint is a variable or an expression that functionally covers design
parameters (reg, logic, enum, etc.).

•	 Each coverpoint includes a set of bins associated with its sampled value or its
value transition.

•	 The so-called bins can be defined by the user or created automatically by an EDA
tool. A bin tells you the actual coverage measure.

7.6  �SystemVerilog “Bins”: Basics…

What’s a “bin”? A “bin” is something that collects coverage information (collect in
a “bin”). Bins are created for coverpoints. If a coverpoint is covering a variable (let’s
say the 8-bit “adr” as shown in Fig. 7.5) and would like to have different values of
that variable be collected in different collecting entities, the “bins” will be those
entities. “Bins” allow you to organize the coverpoints’ sample (or transition)
values.

You can declare bins many ways for a coverpoint. Recall that bins collect cover-
age. From that point of view, you must carefully choose the declaration of your bins.

Okay, here’s the most important point that is very easy to misunderstand. In the
following statement, how many bins will be created? 16, 4, or 1 and what will it
cover?

bins adrbin1 = {[0:3]};
Answer: One bin will be created to cover “adr” values equal to “0,” “1,” “2,” or

“3.”
Note that “bins adrbin1” is without the [] brackets. In other words, “bins adrbin1”

will not automatically create four bins for “adr” values {[0:3]}; it will create only
one bin to cover “adr” values “0,” “1,” “2,” and “3.”

Very important point: Do not confuse {[0:3]} to mean that you are asking the bin
to collect coverage for adr0 to adr15. {[0:3]} literally means “adr” value =0, =1,
=2, and =3.

7  SystemVerilog Functional Coverage (SFC)

137

Another important point “bins adrbin1 = {[0:3]};” also is that if we hit either of
the “adr” value (“0,” “1,” “2,” or “3”), the single bin will be considered completely
covered. Not very intuitive, I agree. But that’s what the language semantics dictate.
Again, you don’t have to cover all four values to have “bins adrbin1” considered
covered. You hit any one of those four values, and the “adrbin1” will be considered
100% covered.

But what if you want each value of the variable “adr” be collected in separate
bins so that you can indeed see if each value of “adr” is covered explicitly? That’s
where “bins adrbin2[] ={[4:5]};” comes into picture. Here “[]” tells the simulator to
create two explicit bins called adrbin2[1] and adrbin2[2] covering the two “adr”
values =4 and =5, respectively. adrbin2[1] will be considered covered if you exer-
cised adr==4, and adrbin2[2] will be considered covered if adr==5 is exercised.

Other ways of creating bins are described in Fig. 7.5 with annotation to describe
the nuances. Note that you can have “less” or “more” number of bins than the “adr”
values on the RHS of a bin’s assignment. How will “bins” be allocated in such cases
is explained in the figure. Note also the case {[31:$]} called “bins heretoend.” What
does “$” mean in this case? It means [32:255] since “adr” is an 8-bit variable.

Fig. 7.5  “Bins”: Basics

7.6 � SystemVerilog “Bins”: Basics…

138

The rest of the semantics is well described with annotation in the figure. Do
study them carefully, since they will be very helpful when you start designing your
strategy to create “bins.”

7.7  �“Covergroup” in a “Class”

So where do you use or declare this “covergroup”? One of the best places to embed
a coverage group is within a “class.” Why a class? Here are some reasons. (Note—
discussion of “class” is beyond the scope of this book. The author is assuming read-
ers’ familiarity with SystemVerilog “class”).

•	 An embedded covergroup defines a coverage model for protected and local
properties.

•	 Class members can be used in coverpoint expressions, coverage constructs, and
option initialization.

•	 By embedding a coverage group within a class definition, the covergroup pro-
vides a simple way to cover a subset of the class properties.

•	 This style of declaring covergroups allows for modular verification environment
development.

•	 An embedded covergroup can define a coverage model for protected and local
class properties without any changes to the class data encapsulation.

Okay, let us see what Fig. 7.6 depicts.

Fig. 7.6  Covergroup in a class

7  SystemVerilog Functional Coverage (SFC)

139

“Covergroup xyzCover” is sampled on any change on variable “m_z.” This cov-
ergroup contains two coverpoints, namely, “m_x” and “m_y.” Note that there are no
explicit bins specified for the coverpoints. How many bins for each coverpoint will
be created?

Note that covergroup is instantiated within the “class.” That makes sense since
the covergroup is embedded within the class. Obviously, if you do not instantiate a
covergroup in the “class,” it will not be created, and there will not be any sampling
of data.

7.8  �“Cross” Coverage

“Cross” is a very important feature of functional coverage. This is where code cov-
erage completely fails. Figure 7.7 describes the syntax and semantics.

Syntax:

‘cross’ coverage is specif ied between two (or more) ‘coverpoint’s or variables.

‘cross’ coverage is allowed only between coverpoints defined within the same covergroup.

Expressions cannot be used directly in a cross

4 bins for 4 values (0,1,2,3) of ‘offset’

4 bins for 4 values (0,1,2,3) of ‘adr’

cross of adr and offset gives 16 coverpoints
(4 coverpoints of ‘ofst * 4 coverpoints of ‘ar’)

bit [1:0] offset, adr;

covergroup cg1 @(posedge clk);

adr_ofst: cross ar, ofst;

endgroup

cg1 cg1Inst = new;

ofst: coverpoint offset { bins ofsbin[] = {[0:3]}; }
ar: coverpoint adr { bins adrbin[] = {[0:3]}; }

optional label
for the ‘cross’
coverpoint

what ‘cross’ really means is ...

Assume that adr==0 has been covered and offset==0 also has been covered but if
adr ==0 && offset==0 never happened together (not necessarily at the same clock)
then the ‘cross’ of adr [0] and offset [0] will be empty.

‘cross’ of N coverpoints is defined as the coverage of all combinations of all bins associated with the
N coverpoints.

•

•

•

•

Fig. 7.7  Cross coverage

7.8  “Cross” Coverage

140

cover_cross ::= [cross_identifier :] cross list_of_cross_items [
iff (expression)] cross_body

Two variables, “offset” and “adr,” are declared. Coverpoint for “offset” creates
four bins called ofsbin[0] ... ofsbin[3] for the four values of “offset,” namely, 0, 1,
2, and 3. Coverpoint “adr” also follows the same logic and creates adrbin[0]...
adrbin[3] for the four values of “adr,” namely, 0, 1, 2, and 3.

adr_ofst is the label given to the “cross” of ar, ofst. First of all, the “cross” of “ar”
(label for coverpoint adr) and “ofst” (label for coverpoint offset) will create another
set of 16 bins (four bins of “adr” *, four bins of “offset”). These “cross” bins will
keep track of the result of “cross.” However, what does “cross” mean?

Four values of “adr” need to be covered (0, 1, 2, 3). Let us assume adr==2 has
been covered (i.e., adrbin[2] is covered). Similarly, there are four values of “offset”
that need to be covered (0, 1, 2, 3), and that offset==0 has also been covered (i.e.,
ofsbin[0] has been covered). However, have we covered “cross” of adr=2 (adrbin[2])
and offset=0 (ofsbin[0])? Not necessarily. “Cross” means that adr=2 and offset=0
must be true “together” at some point in time. This does not mean that they need to
be “covered” at the same time. It simply means that, e.g., if adr==2, it should remain
at that value until offset==0 (or vice versa). This will make both of them true
“together.” If that is the case, then the “cross” of adrbin[2] and ofsbin[0] will be
considered “covered.”

Fig. 7.8  “Cross” coverage: Simulation log

7  SystemVerilog Functional Coverage (SFC)

141

In the simulation log (Fig. 7.8), we see that both adrbin[2] and ofsbin[0] have
been individually covered 100%. However, their “cross” has not been covered.

First, you will see the four bins (ofsbin[0] to ofsbin[3]) of coverpoint cg1::ofst.
All four bins are covered, and hence coverpoint cg1::ofst is 100% covered. Next,
you will see the four bins (adrbin[0] to adrbin[3]) of coverpoint cg1::ar. All bins are
covered here as well and so is the coverpoint cg1::ar.

Now let us look at the “cross” of 4bins*4bins=16 bins coverage. Both “ofst” and
“ar” are 100% covered, but the three cases that follow (among many others) are not
covered because whatever values the testbench drove, these bins never had the same
value at any given point in time (e.g., adrbin[2] is “2” at time t, and then ofsbin[0]
should be “0” either at time t or any time after that, as long as adrbin[2] = “2”).

Hence,

 bin <adrbin[2],ofsbin[0]> 0 1 ZERO

Similarly, there are other cases of “cross” that are not covered as shown in the
simulation log. Such a log will clearly identify the need to enhance your testbench.
To reiterate, such “cross” cannot be derived from code coverage.

7.9  �“Bins” for Transition Coverage

As noted in Fig. 7.9, this is by far the most useful feature of functional coverage.
Transaction level transitions are very important to cover. For example, did the CPU
issue a read followed by write-invalid? Did you issue a D$miss followed by a D$hit
cycle? Such transitions are where the bugs occur, and we want to make sure that we
have indeed exercised such transitions.

Figure 7.9 explains how the semantics work. Note that we are addressing both
the “transition” and the “cross” of “transition” coverage.

There are two transitions in the example.
bins ar1 = (8’h00 => 8’hff); which means that adr1 should transition from “0” to

“ff” on two consecutive posedge of clk. In other words, the testbench must exercise
this condition for it to be covered.

Similarly, there is the “bins ar2” that specifies the transition for adr2 (1 => 0).
The cross of transitions is shown at the bottom of Fig. 7.9. It is very interesting

how this works. Take the first values of each transition (viz., adr1=0 && adr2=1).
This will be the start points of cross transition at the posedge clk. If at the next
(posedge clk) values are adr1=’ff’ && adr2=0, the cross transition is covered.

More on the “bins” of transition is shown in Fig. 7.10. In the figure, different
styles of transitions have been shown. “bins adrb2” requires that “adr1” should
transition from 1=>2=>3 on successive posedge clk. Of course, this transition
sequence can be of arbitrary length. “bins adrb3[]” shows another way to specify
multiple transitions. The annotation in the figure explains how we get four
transitions.

7.9  “Bins” for Transition Coverage

142

“bins adrb5” (in some sense) is analogous to the consecutive operator of asser-
tions. Here ‘hf [*3] means that adr1=‘hf should repeat 3 times at successive posedge
clk.

Similarly, the nonconsecutive transition (‘ha [->3]) means that adr1 should be
equal to ‘ha, three times and not necessarily at consecutive posedge clk. Note that
just as in nonconsecutive operator, here also ‘ha needs to arrive three times with
arbitrary number of clocks in between their arrival and that “adr1” should not have
any other value in between these three transitions. The simulation log shows the
result of a testbench that exercises all the transition conditions.

7.10  �Performance Implications of Coverage Methodology

Introduction: This section describes the methodology components of functional
verification and what you should cover, when you should cover, performance impli-
cations, and applications on how to write properties that combine the power of
assertions with power of functional coverage.

Fig. 7.9  Transition coverage

7  SystemVerilog Functional Coverage (SFC)

143

7.10.1  �Know What You Should Cover

•	 Don’t cover the entire 32-bit address bus.

–– Cover only the addresses of interest (e.g., Byte/word/dword aligned, start/end
address, bank crossing address, etc.)

•	 Don’t cover the entire counter range.

–– Cover only the rollover counter values (transition from all 1s to all 0s)

•	 No need to cover the entire 2K FIFO.

–– Cover only FIFO full, FIFO empty, FIFO full crossed with FIFO_push, FIFO
empty crossed with FIFO read, etc.

•	 Autogenerated bins are both a convenience and a nuisance. They may create a lot
of clutter that may not be relevant. Be judicious in the usage of autogenerated
“bins.”

•	 Use “cross” and “intersect” to weed out unwanted “bins” and also “illegal_bins”
and “ignore_bins.”

Fig. 7.10  “Bins” of transition

7.10  Performance Implications of Coverage Methodology

144

7.10.2  �Know When You Should Cover

•	 Enable your cover points only when they are meaningful.

–– Disable coverage during “reset.”
–– Cover “test mode” signals only when in test mode (e.g., JTAG TAP Controller

TMS asserted).
–– Make effective use of coverage methods such as “start,” “stop,” and “sample”

(more on this later).
–– Do not repeat with covergroups what you have covered with SVA “cover.”
–– Make effective use of covergroup “trigger” condition.
–– Make effective use of the “action” block associated with “cover” to activate a

covergroup.

7.11  �When to “Cover” (Performance Implication)

Functional coverage should be carefully collected as discussed above. The language
does allow tasks that allow you to control when to start collecting coverage and
when to stop. These tasks can be associated with an instance of a covergroup and
invoked from procedural block.

Figure 7.11 shows the covergroup “rg” with two coverpoints “pc” and “gc.” “pc”
covers all the pending requests, and “gc” covers the number of masters on the bus
when those requests are made. “my_rg” is the instance of this covergroup.

Since we want to start collecting pending requests at the assertion of req, when
the requests are granted, we don’t want to cover pending requests and number of
masters anymore. “gnt”-related cover can be another covergroup.

Fig. 7.11  Functional coverage: Performance implication

7  SystemVerilog Functional Coverage (SFC)

145

There is simple control but very good performance improvement. Use it wisely
to speed up your simulation and a more meaningful coverage log.

Lastly, there is the sampling edge task sample() which derives its sampling edge
from “always @ (posedge clk)” and applies it to “my_rg” as this sampling edge.
This also tells us that we can have covergroup-specific sampling edges. It is a very
good feature. Note that my_rg.sample() will “start” when my_rg.start() is executed
and will stop when my_rg.stop() is executed. This is about as easy as it gets when it
comes to controlling collection of coverage information.

Note that optionally, there is also a “strobe” option that can be used to modify the
sampling behavior. When the strobe option is not set (the default), a coverage point
is sampled the instant the clocking event takes place, as if the process triggering the
event were to call the built-in sample() method. If a variable toggles multiple times
in a time step, the coverage point will also be sampled multiple times. The “strobe”
option can be used to specify that coverage points are sampled in the postponed
region, thereby filtering multiple clocking events so that only one sample per time
slot is taken. The strobe option only applies to the scheduling of samples triggered
by a clocking event.

7.12  �SystemVerilog Functional Coverage: Applications

7.12.1  �PCI Cycles

Figure 7.12 shows an application on how to cover all PCI commands. It also shows
how to categorize these commands into different explicit bins. Categorizing this
way helps a lot during debug and measurement of functional coverage.

Figure 7.13 shows an application of how you can make sure that you have “cov-
ered” all possible PCI transactions and all possible transitions among them (e.g.,
IORead to MemWrite, MemRead to MemWrInv, etc.). Without such features, you
will deploy ad hoc methods to see that you have covered (i.e., your testbench have
covered) all possible transitions.

In this application, we are covering all transitions from read to write and write to
read. For example, the following transitions will be covered (only a sample of tran-
sitions is shown):

For read to write (bins R2W[]):

IORead => IOWrite
IORead => MemWrite
IORead => ConfWrite
IORead => MemWrInv
MemRead => IOWrite
<etc.>

For write to read (bins W2R[]):

7.12 � SystemVerilog Functional Coverage: Applications

146

Fig. 7.13  Functional coverage: Application

Fig. 7.12  Functional coverage: Application

7  SystemVerilog Functional Coverage (SFC)

147

IOWrite => IORead
IOWrite => MemRead
IOWrite =>ConfRead
IOWrite +> MemRMult
IOWrite => MemReadLine
MemWrite => IORead
<etc.>

7.12.2  �Frame Length Coverage

Figure 7.14 shows the application that combines local variables, subroutine calls,
covergroups, and interaction with procedural code outside of the assertion. Here’s
how it works.

Read this example bottom-up.
Property frame length says that when the rising edge of TX_EN is sampled, we

should check the length of the transmitted frame using sequence frmLength.

Fig. 7.14  Functional coverage: Application

7.12  SystemVerilog Functional Coverage: Applications

148

Sequence frmLength declares a local variable “cnt” and, at TX_EN==1, initial-
izes cnt=1. One clock later (##1), it increments cnt forever ((TX_EN, cnt++)[*0:$])
until TX_EN deasserts (falls). At that time, we call a task (i.e., a subroutine) called
store_Frame_Lngth(cnt) and provide it the final count as a parameter. This final
count is the length of the frame that started with TX_EN assertion.

The task store_Frame_Lngth takes the “cnt” as input and assigns it to “logic”-
type FrameLngth and triggers a named event called measureFrameLength.

Now the covergroup length_cg triggers at “measureFrameLength” edge, which
we just triggered explicitly from task store_Frame_Lngth. The coverpoint covers
FrameLngth.

In short, we measure the frame length starting assertion of TX_EN until deasser-
tion of it. We measure the frame length between assertion and deassertion of TX_
EN and cover it. With every new assertion of TX_EN, we measure the length of a
new frame.

Note that “coverpoint FrameLngth” does not specify any explicit bins. That will
create 256 explicit bins each containing a frame length. This way we make sure that
we have covered all (i.e., 256) different frame lengths.

7  SystemVerilog Functional Coverage (SFC)

149© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_8

Chapter 8
Clock Domain Crossing (CDC) Verification

Chapter Introduction
Clock domain crossing (CDC) has become an ever-increasing problem in multi-clock
domain designs. One must solve issues not only at RTL level but also consider the
physical timing. This chapter will start with understanding of metastability and then
dive into different synchronizing techniques. It will also discuss the role of SystemVerilog
Assertions in verification of CDC. We will then discuss a complete methodology.

8.1  �Design Complexity and CDC

There are hardly any designs today that operate on a single clock. A typical SoC will
have three or more clocks, and these will be asynchronous. We have all done CDC
checks using lint tools, among others. But the problem is that there is a disconnect
between RTL static or simulation-based analysis and what we see in the physical
chip. The issue of metastability due to clock domain crossing is not very predictable
at RTL or gate level. Therefore, simulation does not accurately predict silicon
behavior, and critical bugs may escape the verification process. This results in
almost 25% of all respins due to clocking issues, CDC being the chief among them.

Here’s an example of typical real-life designs and the number of clocks and CDC
signals they have. This is just a representative data point [(PING YEUNG PH.D.)].

Design type Number of clock domains Number of CDC signals

Gigabit Ethernet interface 24–28 ~ 11,000
Graphics application 36–42 ~18,000
Multimedia SoC 4 ~54
Wireless 8 ~365

This table goes to show the complexity of CDC verification. Both single-bit and
multi-bit synchronizations need to take place.

150

8.2  �Metastability

The main culprit in CDC is the metastability of data that occurs when data crosses
from one clock domain to another. The first can be slower or faster compared to the
other clock domain. The data that crosses the boundary can end up violating setup/
hold requirements of the second clock domain. This is explained via Fig. 8.1. This
figure shows a synchronization failure that occurs when a TxData generated in
TxClk clock domain is sampled too close (setup violation) to the rising edge of
RxClk of the Rx logic domain. Synchronization failure is caused by an output going
metastable and not converging to a legal stable state.

When TxData violates setup time of the RxClk, RxData goes metastable, mean-
ing we don’t know what state will it settle down to or settle down at all within one
clock. If TxData is held “long” enough, RxData will eventually become stable and
end up in a correct state. For the sake of simplicity, I’ve shown the metastable
RxData to stabilize in one clock. But that may not necessarily be the case in all
instances. If the metastable RxData is fed directly into the forward logic, you do not

Fig. 8.1  Clock domain crossing—metastability

8  Clock Domain Crossing (CDC) Verification

151

know what metastable state got propagated to the forward logic. Since the CDC
signal can fluctuate for some period of time, the input logic in the receiving clock
domain might recognize the logic level of the fluctuating signal to be different val-
ues and hence propagate erroneous signals into the receiving clock domain. In RTL
simulation, this metastable state will be regarded as “X” (unknown) state (correctly
so), and the logic beyond RxDFF may be rendered useless (i.e., “X” propagation
will cause all sorts of issues in the logic).

In short, synchronization failure is caused by an output going metastable and not
converging to a legal stable state by the time the output must be sampled again.

8.3  �Synchronizer

8.3.1  �Two-Flop Synchronizer (Identical Transmit and Receive
Clock Frequencies)

A synchronizer is a device that samples an asynchronous signal and outputs a ver-
sion of the signal that has transitions synchronized to a sample clock.

The simplest synchronizer used in designs is a two-flop synchronizer (Fig. 8.2).
The idea is that the first flop on the transmit side samples data input on the first
flop’s clock (let’s call this the transmit clock). The first flop on the receiving clock
can be very close to the transmit clock. In this case, the output of the transmit clock
flop when captured by the receiving clock will output (at the output of the receive
flop) a metastable signal, because the data output of the transmit flop violated the
setup/hold requirement of the receive flop. If you let the receive flop output propa-
gate to the design, the results will be unpredictable, because this output can be a “1”
or a “0”; you don’t know.

But if you insert a second flop in the receiving circuit, the metastable signal out-
put of the first flop of the receive clock will have time (one clock’s worth) to stabi-
lize before being latched into the second flop on receive side. Now, the output of this

Fig. 8.2  Clock domain crossing—two-flop single-bit synchronizer

8.3  Synchronizer

152

second flop will have a stable value and can propagate to the rest of the design
without unpredictability. Please refer to Fig. 8.3 to understand this scenario. To reit-
erate, the first flip-flop samples the asynchronous input signal into the new clock
domain and waits for a full clock cycle to permit any metastability on the stage-1
output signal to decay, and then the stage-1 signal is sampled by the same clock into
a second-stage flip-flop, with the intended goal that the stage-2 signal is now a sta-
ble and valid signal synchronized and ready for distribution within the new clock
domain.

A couple of implementation guidelines for the two-flop synchronizer:

	1.	 There should not be any combinational logic between the Transmit DFF and the
Receive DFF. This allows for maximum metastability resolution time.

	2.	 RxDFF1 and RxDFF2 synchronizer flops should be placed as close as possible
during layout. Most companies nowadays offer a predefined, laid out, and veri-
fied synchronizer macros which can be hand placed in RTL.

8.3.2  �Three-Flop Synchronizer (High-Speed Designs)

For some very high-speed designs, the mean time between failure (MTBF) is too
short since the data may change before the second flop synchronizes the TxData. In
such cases, you may need three-flop synchronizers to compensate for the high
speed. Metastability may not settle down at RxDFF2 (Rx2Data) and hence the need
for the third flop (RxDFF3) (Fig. 8.4).

Fig. 8.3  Clock domain crossing—synchronizer—waveform

8  Clock Domain Crossing (CDC) Verification

153

8.3.3  �Synchronizing Fast-Clock (Transmit) into Slow-Clock
(Receive) Domains

So far, we have seen synchronizers that work when both the transmit and the receive
clocks are of the same frequency. Note that if the transmit clock is slower than the
receive clock, the two (or three) flop synchronizers will work quite well. Recognizing
that sampling slower signals into faster-clock domains causes fewer potential prob-
lems than sampling faster signals into slower-clock domains, a designer might want
to take advantage of this fact by using simple two flip-flop synchronizers to pass
single CDC signals between clock domains.

But when the transmit clock is faster than the receive clock, there is the possibil-
ity that a signal from the transmit logic may change values twice before it can be
sampled or might be too close to the sampling edge of the slower receive clock
domain.

For the ensuing discussion, let us call the signal that needs synchronization as the
CDC signal. That will make it easier to describe the concept. Here’s the two-flop
synchronization (Fig. 8.5) for ease of reference.

TxClk

TxData Rx1Data Rx2Data RxData

Rx Logic

TxDFF RxDFF1 RxDFF2 RxDFF3

RxClk

Fig. 8.4  Three-flop single-bit synchronizer

Fig. 8.5  Two-flop single-bit synchronizer

8.3  Synchronizer

154

If the CDC signal is only pulsed for one fast-clock cycle, the CDC signal could
go high and low between the rising edges of a slower clock and not be captured into
the slower-clock domain. This is shown in Fig. 8.6. In this figure, TxData goes high
and then goes low (1 high pulse) in between the RxClk period. In other words, this
high pulse will not be captured by the RxClk. That results into the Rx1Data remain-
ing at the previously captured state of “0” and so does RxData. The high pulse on
TxData is dropped by the receive logic which will result in incorrect behavior in the
receive logic.

Hence, a two-flop synchronizer won’t work when the transmit clock is faster
than the receive clock.

One potential solution to this problem is to assert the TxData signal (i.e., the
CDC signal) for a period that exceeds the cycle time of the receive clock. This is
shown in Fig. 8.7. The general rule of thumb is that the minimum pulse width of the
transmit signal be 1.5x the period of the receive clock frequency. The assumption is

TxClk

TxData

RxClk

Rx1Data

RxData

Fig. 8.6  Faster transmit clock to slower receive clock—two-flop synchronizer won't work

TxClk

TxData

RxClk

Rx1Data

RxData

Fig. 8.7  Lengthened transmit pulse for correct capture in receive clock domain

8  Clock Domain Crossing (CDC) Verification

155

that the CDC signal will be sampled at least once by the receive clock. The issue
with this solution will arise if an engineer mistakes this solution to be a general-
purpose solution and miss the transmit (CDC) signal period requirement. This is
where SystemVerilog Assertions come into picture. Put an assertion on the CDC
signal for its period check when crossing from the high-frequency to the low-
frequency domain.

There are other solutions to tackle this problem, which are beyond the scope of
this book.

8.3.4  �Multi-bit Synchronization

When passing multiple signals between clock domains, simple synchronizers do not
guarantee safe delivery of the data. A frequent mistake made by engineers when
working on multi-clock designs is passing multiple CDC bits required in the same
transaction from one clock domain to another and overlooking the importance of the
synchronized sampling of the CDC bits.

The problem is that multiple signals that are synchronized to one clock will
experience small data-changing skews that can occasionally be sampled on different
rising clock edges in a second clock domain. Even if we could perfectly control and
match the trace lengths of the multiple signals, differences in rise and fall times as
well as process variations across a die could introduce enough skew to cause sam-
pling failures on otherwise carefully matched traces.

Here are a couple of solutions to solve the multi-bit synchronization problem.
In-depth discussion of these solutions is out of scope of this book, but I highly rec-
ommend a SNUG paper by Cliff Cummings mentioned in the Bibliography (Clifford
E. Cummings).

	1.	 The Gray Code Solution Where Multiple CDC Bits Are Passed Using Gray
Codes

The safest counters that can be used in multi-clock designs are Gray Code coun-
ters. Gray Codes only allow one bit to change for each clock transition, eliminating
the problem associated with trying to synchronize multiple changing CDC bits
across a clock domain. Standard Gray Codes have very nice translation properties
to convert gray to binary and back again. Using these conversions, it is simple to
design efficient Gray Code counters.

I am sure we are familiar with Binary to Gray and Gray to Binary code conver-
sion formulas. But they are presented here for the sake of completeness.

4-bit Gray to Binary conversion:

binary [0] = gray[3] ^ gray[2] ^ gray[1] ^ gray[0];
binary [1] = gray[3] ^ gray[2] ^ gray[1];
binary [2] = gray[3] ^ gray[2];
binary [3] = gray[3];

8.3  Synchronizer

156

This can also be represented as:

binary [0] = gray[3] ^ gray[2] ^ gray[1] ^ gray[0] ; // gray>>0
binary [1] = 1'b0 ^ gray[3] ^ gray[2] ^ gray[1] ; // gray>>1
binary [2] = 1'b0 ^ 1'b0 ^ gray[3] ^ gray[2] ; // gray>>2
binary [3] = 1'b0 ^ 1'b0 ^ 1'b0 ^ gray[3] ; // gray>>3

And here’s the Binary to Gray conversion:

gray[0] = binary[0] ^ binary [1];
gray[1] = binary [1] ^ binary [2];
gray[2] = binary [2] ^ binary [3];
gray[3] = binary [3] ^ 1'b0 ;

	2.	 Asynchronous FIFO Implementation

Passing multiple bits, whether data bits or control bits, can be done through an
asynchronous FIFO. An asynchronous FIFO is a shared memory or register buffer
where data is inserted from the write clock domain and data is removed from the
read clock domain. Since both sender and receiver operate within their own respec-
tive clock domains, using a dual-port buffer, such as a FIFO, is a safe way to pass
multi-bit values between clock domains. A standard asynchronous FIFO device
allows multiple data or control words to be inserted if the FIFO is not full. The
receiver can then extract multiple data or control words if the FIFO is not empty.

8.3.5  �Design of an Asynchronous FIFO Using Gray Code Counters

The Gray Code counters are used in this asynchronous FIFO design for the Read_
pointer and the Write_pointer guaranteeing successful transfer of multi-bit data
from write clock (aka the transmit clock) to read clock (aka the receive clock). Let
us look at an asynchronous FIFO design that uses Gray Code counter.

module asynchronous_fifo (
 // Outputs
 fifo_out, full, empty,
 // Inputs
 wclk, wclk_reset_n, write_en,
 rclk, rclk_reset_n, read_en,
 fifo_in
);

 `define FF_DLY 1’b1
 parameter D_WIDTH = 20;
 parameter D_DEPTH = 4;
 parameter A_WIDTH = 2;

8  Clock Domain Crossing (CDC) Verification

157

 input wclk_reset_n;
 input rclk_reset_n;
 input wclk;
 input rclk;
 input write_en;
 input read_en;
 input [D_WIDTH-1:0] fifo_in;

 output [D_WIDTH-1:0] fifo_out;
 output full;
 output empty;

 reg [D_WIDTH-1:0] reg_mem[0:D_DEPTH-1];
 reg [A_WIDTH:0] wr_ptr;
 reg [A_WIDTH:0] wr_ptr_gray;
 reg [A_WIDTH:0] wr_ptr_gray_rclk_q;
 reg [A_WIDTH:0] wr_ptr_gray_rclk_q2;
 reg [A_WIDTH:0] rd_ptr;
 reg [A_WIDTH:0] rd_ptr_gray;
 reg [A_WIDTH:0] rd_ptr_gray_wclk_q;
 reg [A_WIDTH:0] rd_ptr_gray_wclk_q2;

 reg full;
 reg empty;

 wire [A_WIDTH:0] nxt_wr_ptr;
 wire [A_WIDTH:0] nxt_rd_ptr;
 wire [A_WIDTH:0] nxt_wr_ptr_gray;
 wire [A_WIDTH:0] nxt_rd_ptr_gray;
 wire [A_WIDTH-1:0] wr_addr;
 wire [A_WIDTH-1:0] rd_addr;
 wire full_d;
 wire empty_d;

 assign wr_addr = wr_ptr[A_WIDTH-1:0];
 assign rd_addr = rd_ptr[A_WIDTH-1:0];

 always @ (posedge wclk)
 if (write_en) reg_mem[wr_addr] <= #`FF_DLY fifo_in;

 assign fifo_out = reg_mem[rd_addr];

 always @ (posedge wclk or negedge wclk_reset_n)
 if (!wclk_reset_n) begin
 wr_ptr <= #`FF_DLY {A_WIDTH+1{1'b0}};

8.3  Synchronizer

158

 wr_ptr_gray <= #`FF_DLY {A_WIDTH+1{1'b0}};
 end else begin
 wr_ptr <= #`FF_DLY nxt_wr_ptr;
 wr_ptr_gray <= #`FF_DLY nxt_wr_ptr_gray;
 end

 assign nxt_wr_ptr = (write_en) ? wr_ptr+1 : wr_ptr;
 assign nxt_wr_ptr_gray = ((nxt_wr_ptr>>1) ^ nxt_wr_ptr);

 always @ (posedge rclk or negedge rclk_reset_n)
 if (!rclk_reset_n) begin
 rd_ptr <= #`FF_DLY {A_WIDTH+1{1'b0}};
 rd_ptr_gray <= #`FF_DLY {A_WIDTH+1{1'b0}};
 end else begin
 rd_ptr <= #`FF_DLY nxt_rd_ptr;
 rd_ptr_gray <= #`FF_DLY nxt_rd_ptr_gray;
 end

 assign nxt_rd_ptr = (read_en) ? rd_ptr+1 : rd_ptr;
 assign nxt_rd_ptr_gray = (nxt_rd_ptr>>1) ^ nxt_rd_ptr;

 // check full
 always @ (posedge wclk or negedge wclk_reset_n)
 if (!wclk_reset_n)
 {rd_ptr_gray_wclk_q2, rd_ptr_gray_wclk_q} <= #`FF_DLY {{A_
WIDTH+1{1'b0}}, {A_WIDTH+1{1'b0}}};
 else
 {rd_ptr_gray_wclk_q2, rd_ptr_gray_wclk_q} <= #`FF_DLY {rd_
ptr_gray_wclk_q, rd_ptr_gray};

 assign full_d = (nxt_wr_ptr_gray == {~rd_ptr_gray_wclk_q2[A_
WIDTH:A_WIDTH-1], rd_ptr_gray_wclk_q2[A_WIDTH-2:0]});

 always @ (posedge wclk or negedge wclk_reset_n)
 if (!wclk_reset_n)
 full <= #`FF_DLY 1'b0;
 else
 full <= #`FF_DLY full_d;

 // check empty
 always @ (posedge rclk or negedge rclk_reset_n)
 if (!rclk_reset_n)
 {wr_ptr_gray_rclk_q2, wr_ptr_gray_rclk_q} <= #`FF_DLY {{A_
WIDTH+1{1'b0}}, {A_WIDTH+1{1'b0}}};
 else
 {wr_ptr_gray_rclk_q2, wr_ptr_gray_rclk_q} <= #`FF_DLY {wr_ptr_

8  Clock Domain Crossing (CDC) Verification

159

gray_rclk_q, wr_ptr_gray};

 assign empty_d = (nxt_rd_ptr_gray == wr_ptr_gray_rclk_q2);

 always @ (posedge rclk or negedge rclk_reset_n)
 if (!rclk_reset_n)
 empty <= #`FF_DLY 1'b1;
 else
 empty <= #`FF_DLY empty_d;

endmodule

In the next section, we will see how to use SystemVerilog Assertions to make
sure that data are not dropped when write data (on write clock) are transferred
through Gray Code counter synchronization logic to read data (on read clock).

8.4  �CDC Checks Using SystemVerilog Assertions

As we saw, in Chap. 6, SystemVerilog Assertions (SVA) are a great way to check for
sequential domain conditions at clock (or sampling edge) boundaries. The CDC
signals crossing from one clock domain to another are perfect candidates to check
for using SVA. SVA fully supports multi-clock domain assertions as well as multi-
threaded local variables to make full proof checkers to see that your CDC synchro-
nizers (whatever the design style) work as promised. Note that the assertions
presented here can be used both for simulation-based checking and formal-based
checking (static functional). But I will focus on simulation-based checking since the
formal/static functional is still not fully adopted by many engineering groups and
requires a complete chapter in itself.

Let us start with the simplest of the design. Later we will see a comprehensive
assertion for CDC multi-bit data transfer using the Gray Code counter-based asyn-
chronous FIFO described above.

Here’s a wonderful two-flop synchronizer repeated for the sake of convenience.

8.4 � CDC Checks Using SystemVerilog Assertions

http://dx.doi.org/10.1007/978-3-319-59418-7_6

160

For any synchronizer design, there will be assumptions on TxData stability.
Should it remain stable for two clocks? Three clocks? This is to make sure that the
CDC signal Rx1Data has enough time to filter the metastability region and pass the
correct value to RxData (the output). Let us go with the assumption that TxData
should remain stable for two clocks every time it assumes a new value (i.e., it
changes). This assumption is required since we assume that TxClk is faster than
RxClk. Refer to Fig. 8.7 for the timing diagram of this design.

Here’s a simple assertion to check for TxData stability:

property TxData_stable;
 @(posedge Txclk) $changed(TxData) |=> $stable(TxData) [*2];
endproperty

assert property (TxData_stable);

Let us now see how to make sure that this two-flop single-bit syn-
chronizer correctly transfers data so that RxData === TxData after
metastability filter:

property Tx_to_Rx_CDC_DataCheck;
local Data;

 @(posedge Txclk) ($changed(TxData)) |=>
 (1’b1, (Data = TxData)) ##1
 @(posedge RxClk) (Rx1Data === Data) ##1 (Rxdata === Data);
endproperty: Tx_to_Rx_CDC_DataCheck

assert property (Tx_to_Rx_CDC_DataCheck);

First, the assertion checks that TxData has changed at posedge of TxClk. If it has,
we first store the TxData into the multi-threaded local variable Data. 1’b1 is required
because local data store must be attached to an expression. Since we don’t have any
condition, we simply say “always true” is the expression. “Always true” means
always store TxData into the data, whenever TxData changes. Then, we check at the
CDC boundary clock RxClk that the data has indeed transferred to Rx1Data by
comparing Rx1Data with the stored TxData (in the data). One clock later, the
RxData must match the TxData that was transmitted on TxClk. This guarantees that
the CDC 1-bit two-flop synchronization works as intended. Again, note that the
assumption of TxClk faster than RxClk must be adhered to.

As an exercise, see if you can write a simple assertion to check for glitch on
TxData. The above solution assumes no glitch on TxData.

Ok, now let us write a comprehensive assertion for a multi-bit Gray Code
counter-based data transfer across CDC region. This assertion is written for the
asynchronous FIFO design shown in Sect. 3.5. The write data are written to fifo_in
on wclk (write clock); and read from fifo_out on rclk (read clk). The assertion has
to make sure that whatever data were written into FIFO at the write pointer, the
same data is read out from FIFO when read pointer is equal to the write pointer:

8  Clock Domain Crossing (CDC) Verification

161

sequence rd_detect(ptr);
 ##[0:$] (read_en && !empty && (aff1.rd_ptr == ptr));
endsequence

property data_check(wrptr);
integer ptr, data;
 @ (posedge wclk) disable iff (!wclk_reset_n || !rclk_reset_n)
 (write_en && !full, ptr=wrptr, data=fifo_in,
 $display($stime,"\t Assertion Disp wr_ptr=%h data=%h”, aff1.
wr_ptr, fifo_in))

|=>
 @ (negedge rclk) first_match(rd_detect(ptr),
 $display($stime,,," Assertion Disp FIRST_MATCH ptr=%h Compare
data=%h fifo_out=%h", ptr, data, fifo_out))
 ##0 (fifo_out === data);
endproperty

dcheck : assert property (data_check(aff1.wr_ptr))
else$display($stime,,,"FAIL: DATA CHECK");
dcheckc : cover property (data_check(aff1.wr_ptr))
$display($stime,,,"PASS: DATA CHECK");

In this assertion, data_check property checks to see if FIFO is not full. If so, saves
wr_ptr into the local variable “ptr” and the data from FIFO into local variable “data” and
display so that we can easily see how the assertion is progressing during simulation.

If the antecedent is true, the consequent says that the first match of rd_ptr being
the same as wr_ptr (note wr_ptr was stored in local variable ptr) and that the read
data is the same as the write data (note write data were stored in local variable data
in the antecedent).

Sequence rd_detect(ptr) is used as an expression to first_match. It says that wait
from now until forever until you detect a read, and its rd_ptr is equal to the wr_ptr
(which is stored in the local variable “ptr” in the antecedent).

Many such assertions can be written to see that your synchronizer design works.
As an exercise, try writing simple assertions for your synchronizer design.

8.5  �CDC Verification Methodology

Metastability from the intermixing of multiple clock signals is not accurately mod-
eled by simulation. Unless you leverage exhaustive, automated clock domain cross-
ing (CDC) analyses to identify and correct problem areas, you will inevitably suffer
unpredictable behavior when the chip samples come back from the fab. Bottom line:
automated CDC verification solutions are mandatory for multi-clock designs.

8.5  CDC Verification Methodology

162

Traditional CDC verification methods include manually inspecting RTL code for
the presence of synchronizers, running full timing simulations, sweeping clocks
against each other, and using special simulation models to randomly vary the delays
through synchronizers. These methods find only a subset of errors in a given design.

An effective CDC verification methodology should include structural, protocol,
and re-convergence fanout verification [(PING YEUNG PH.D.)].

Structural Verification
Each synchronizer must have the correct structure for the type of signal being sent
across clock domains. For example, a 2-DFF synchronizer is usually the best solu-
tion for single-bit signals but should not be used for multi-bit signals unless they are
gray-coded to ensure that only one bit changes at a time. Multi-bit signals may be
synchronized across domains using a separate control signal, an asynchronous
FIFO, or other methods. Also, there should be no combinational logic inside or
before a synchronizer.

Protocol Verification
Each synchronizer must follow a set of rules, called a transfer protocol, to ensure
that the CDC signal is properly transferred across clock domains. For example, even
the simplest 2-DFF synchronizer requires that the transmitting signal be held stable
long enough to guarantee that it is captured in the receiving domain. This may not
occur if the transmitting clock is faster than the receiving clock. Synchronization
structures for multi-bit signals require more complex protocol checks. When CDC
transfer protocols are violated, an error may not occur in simulation but will eventu-
ally occur in real hardware. Protocol analysis should be done using static formal
methods. SVA should be deployed to check for correct protocol adherence.

Re-convergence Fanout Verification (Fig. 8.8)
Re-convergence occurs when multiple signals are synchronized separately from one
clock domain to another and then used by the same logic in the receiving domain. If
that logic assumes a timing relationship between the signals, the design is not
tolerant of metastability and will eventually fail. This is because the purpose of
synchronizers is to “filter out” metastability to ensure that unpredictable values are
not seen by the receiving logic.

Fig. 8.8  Clock domain crossing—re-convergent fanout and CDC

8  Clock Domain Crossing (CDC) Verification

163

Let us see how we can combine structural analysis with protocol analysis to
come up with an automated comprehensive methodology. The following is a generic
diagram representing the automated process many EDA vendors now provide.

8.5.1  �Automated CDC Verification

Figure 8.9 shows a proposed methodology. EDA vendors have implemented similar
methodology (or are working toward).

8.5.2  �Step 1: Structural Verification

Identify RTL blocks (not the entire SoC RTL) that have CDC signals at play. Feed
such RTL blocks to the static formal structural analysis tool. This tool will identify
CDC synchronization “structures” within your logic and analyze to see if they meet
the requirements. For example, a single-bit CDC synchronization will work with a
two-flop synchronizer. But for a multi-bit synchronizer, the two-flop solution won’t
work. You may need an asynchronous FIFO-based solution or a gray counter (where
only 1 bit changes at a time). The tool will analyze such situations and provide a
structural analysis report. The results are also stored in a UCDB style database for
further debug analysis. This step should find issues with missing and incorrectly
implemented synchronizers and potential re-convergence problems.

More important in this step is to automate derivation of SystemVerilog Assertions.
For example, for a two-flop synchronizer, the input data should remain stable for at
least 1.5x the receive clock. The structural analysis tool will (should) automatically
write such assertions for the next stage of protocol verification. There are many such

RTL

Test Vectors +
Metastability

injec�on

PROTOCAL analysis
Sta�c Formal +

Simula�on

STRUCTURAL analysis
Sta�c Formal

Result
Database

Protocol
Asser�ons Debug

Fig. 8.9  Clock domain crossing—automated methodology

8.5 � CDC Verification Methodology

164

constraints/checks that need to be provided to the protocol analyzer. The structural
analysis tool “knows” what type of structure has been designed and thereby should
be able to create assertions for protocols that the structure needs to adhere to.

You need to evaluate the structural analysis results provided by an EDA vendor
tool and either accept the recommendation or reject them and implement the best
structure that you envision. Don’t worry; the protocol analyzer will grab you if your
structure does not meet synchronization protocol requirements.

8.5.3  �Step 2: Protocol Verification

Once the structural analysis is complete, the assertions (either automatically created
or manually) will be input to the protocol analyzer. The static formal method employed
in the protocol analyzer will try all possible combinations of inputs (both in temporal
and combinational domain) to the RTL block and see if any of the assertions
FAIL. These assertions ensure that the CDC signal is stable when going from the TX
to the RX domain; the multiple-bit CDC data is gray coded, or it is stable when it is
sampled. The results will show failures which need to be analyzed to correct the syn-
chronizer. Multiple iterations of this step will make sure that the logic will survive
under all conditions of input and that the metastability has been addressed.

In addition to static formal, you may also want to simulate using the created asser-
tions. For example, you feel comfortable with sweeping clocks to check for re-conver-
gence logic. Or you want to deploy the so-called static + simulation hybrid methodology
to check for the structural integrity against required protocol specification.

8.5.4  �Step 3: Debug

Of course, debug is a big part of this strategy. The results from structural and proto-
col analysis are stored in an UCDB style database. The debug tool will associate the
structure against the protocol and show the relationship. It will also help you debug
failing assertions. EDA tools do support such debug capabilities.

Based on the debug results, you will either change the RTL or change the input
test vectors and metastability injection strategy.

This loop will continue until there are no more assertions that fire and the meta-
stability issues are completely resolved.

This is what I call a proposed methodology. You may discuss it with EDA ven-
dors to see how close they come to it with their proposed solution.

8.6  �CDC Verification at Gate Level

The next problem is CDC at gate level. Gate-level simulations are notorious in
propagating an unknown “X,” rapidly throughout the design. The two-flop synchro-
nizer can cause the “X” propagation problem. See Fig. 8.10 to understand this issue.

8  Clock Domain Crossing (CDC) Verification

165

When doing gate-level simulations on a multi-clock design [(Clifford
E. Cummings)], the ASIC library models of flip-flops are modeled with setup and
hold time expressions to match the timing specifications of the actual flip-flops.
ASIC libraries typically model flip-flops to drive X's (unknowns) on the flip-flop
outputs when a timing violation occurs. When simulating gate-level synchronizers,
setup and hold time violations might cause ASIC libraries to issue setup and hold
time error messages, and the offending signals are frequently driven to an X value.
These X values propagate to the rest of the design causing problems when trying to
verify the functionality of the entire gate-level design (Fig. 8.10).

There are many techniques available to turn “OFF” such “X” propagation when
doing CDC verification at gate level. If you are familiar with SystemVerilog and
EDA simulators, you may be familiar with these techniques. But for the sake of
completeness, here they are.

Change the flop setup and hold times to 0. This will obviously not give any tim-
ing violation and hence prevent “X” from being generated because of timing viola-
tion. BUT this will basically nullify the setup/hold of “all” the flops in your
vendor-provided library. So this may not be a good strategy after all.

Turn OFF the timing check in the “specify” block of the flop cells. Many vendors
provide a command line option “+no_notifier” to automatically turn OFF “X” gen-
eration due to a timing violation. I believe this is a preferred methodology, since you
will indeed get a timing violation telling you that there is a synchronization issue
but will not generate an “X.”

8.7  �EDA Vendors and CDC Tools Support

So what kind of industry tools are available to help a DV engineer tackle CDC veri-
fication? Synopsys SpyGlass CDC and Mentor’s Questa CDC are two of the many
tools available in the EDA market. I’ve described only Mentor’s solution. Synopsys
does not provide information on their SpyGlass CDC tool unless you register. So do
not go there.

TxClk

RxClk

TxData

Rx1Data Metastable Region going ‘X’

Stable Regions going ‘X’

Rest of the logic going ‘X’

RxData

Design Logic

Setup Violation

Fig. 8.10  Gate-level CDC

8.7  EDA Vendors and CDC Tools Support

166

8.7.1  �Mentor

Here’s a brief description of Mentor’s Questa CDC methodology (Fig. 8.11) [
(MentorGraphics)]. The following description is taken directly from Mentor’s mar-
keting literature. Make sure that their claims are indeed valid!

Questa® CDC identifies errors using structural analysis to recognize clock
domains, synchronizers, and low-power structures via the Unified Power Format
(UPF). It generates assertions for protocol verification along with metastability
models for re-convergence verification. All properties and design intent are inferred
by the software.

The technology checks all potential CDC failures, statically verifying that all
signals crossing asynchronous clock domain boundaries are guarded by CDC syn-
chronizers. It then illustrates DUT issues found with familiar schematic and wave-
form displays. Additionally, in concert with Questa simulation, the CDC-FX app
injects metastability into RTL functional simulation to verify if the DUT is tolerant
of random delays caused by metastability.

Low-power intent awareness—Questa CDC accepts your UPF file without mod-
ification to ensure low-power circuitry does not introduce CDC-related issues.
Specifically, Questa CDC considers all isolation and retention cells, power domains
with dynamic voltage, and frequency scaling (DVFS) and verifies voltage domain
crossing (VDC) paths.

Fig. 8.11  Mentor Questa CDC methodology

8  Clock Domain Crossing (CDC) Verification

167© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_9

Chapter 9
Low-Power Verification

Chapter Introduction
Low-power verification has become probably one of the most complex design verifica-
tion problems to address under the design verification umbrella. Verification of low
power is not simply restricted to checking for isolation cells, retention cells, and power
domain ON/OFF conditions, but it also needs to check to see if the applied low-power
techniques indeed improve the battery life without affecting performance!

9.1  �Power Requirements: Current Industry Trend

Figure 9.1 describes a real dilemma that the industry faces. The number one issue in
today’s devices is the ever-shrinking form factor which means the room for large bat-
tery is obviously shrinking. This translates into designing devices that use as low
power as possible. The requirements for power do not change, but the amount of logic
onto VLSI chips keeps increasing. This means the power consumption trend keeps
going up. The challenge is to narrow the gap between power requirements and power
trend. Also, one can mention the ever-increasing need for green electronics, the suc-
cess of mobile electronics operated from batteries with limited lifetime between
recharges, and the emergence of applications requiring near zero-power energy (wire-
less sensor networks, implantable devices for health monitoring or smart cards).

Managing power consumption is even more challenging in the context of SoC
(System on Chip) design. SoCs integrate various kinds of digital and analog blocks.
Digital block may be either pure processor, microcontroller, or DSP, or it can be
made of hardwired functions with a mixture of standard cells and SRAM memories.
As a matter of fact, several dozens of CPUs, several hundreds of SRAM cuts, and
few millions of standard cells may be integrated today in a single chip. For consistent
power modeling, the external memory, battery, clock, and any other device on the
platform that interfaces with the SoC have also to be considered.

168

Additional difficulty stems from the fact that the integrated IPs may come from
multiple providers, using different methodologies, CAD tools, and description for-
mats. When a SoC is built, some of the IPs are reused, and some of them are designed
for the first time. For the former, accurate models can be obtained from existing
data, whereas for the latter only rough estimates may be available at first. It is
important to IP integrators to have tools able to cope with this heterogeneity.

There are two types of power that we need to worry about. These are the dynamic
power (when transistors switch state from 1->0 or 0->1) and the static power (when
the transistor is in quiescent state). With giga-large integration of transistors, a mul-
titude of functions will be executing simultaneously to draw a large amount of
dynamic power, and we need to architect a solution for it and verify that solution.

With process technologies below 14 nm, static power consumption has become a
prominent and, in many cases, dominant design constraint. Due to the physics of the
smaller process nodes, power is leaked from transistors even when the circuitry is
quiescent (no toggling of nodes from 0 to 1 or vice versa). New design techniques
have been developed to manage static power consumption. Power gating or power
shutoff turns off power for a set of logic elements. Back–bias techniques are used to
raise the voltage threshold at which a transistor can change its state. While back bias
slows the performance of the transistor, it greatly reduces leakage. Logic design strate-
gies to minimize static power and dynamic power are beyond the scope of this book.

We will focus on dynamic power verification in this book. What are high level
strategies to lower dynamic power and more importantly how do you verify that
those strategies do not affect SoC functionality? We will discuss power-management
controllers, isolation cells that logically and/or electrically isolate a shutdown power
domain from “powered-up” domains, level-shifters that translate signal voltages
from one domain to another, and retention registers to facilitate fast transition from
a power-off state to a power-on state for a domain.

2007
0

500

1000

1500

2000

2500

3000

3500

Static Dynamic

Power Requirment vs. Power Trends (Source: The International Technology
Roadmap for Semiconductors (ITRS), 2008 Update)

Power[mW] Power Requirement
Power Trend

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Fig. 9.1  Power requirements vs. power trend

9  Low-Power Verification

169

9.2  �Dynamic Low-Power Verification Challenges

How do you address the increasing demands of power due to increased integration
of functions at smaller geometries? An entire discipline in academia and industry is
vying to come up with technologies and methodologies to reduce dynamic power
during functioning of a device.

Low-Power Verification Challenges
	1.	 Power vs. performance

Requirement is to lower the power while maintaining or improving the perfor-
mance. Techniques such as Dynamic Voltage and Frequency Scaling (DVFS) are
being deployed to address this challenge. But how would you verify that the DVFS
scheme (or any other technique for that matter) does not affect the functionality of
the device? That’s a verification challenge. You need to be able to verify functional-
ity, power consumption, and performance improvement all together. Simply verify-
ing that the functionality is correct is not sufficient. If the power consumption is
high, correct functionality does not achieve the goal of low-power design.

	2.	 Dynamic power analysis and verification is dependent on use case

In other words, dynamic power consumption is dependent on the activity level in
the device. The higher the toggle frequency, the higher the dynamic power. One can
indeed use scan-based vectors to induce such “activity” within the device, but expe-
rience has shown that such power analysis is too pessimistic and will require very
pessimistic changes to device architecture.

What you need are dynamic simulation vectors that produce “real life” traffic for
each subsystem (e.g., audio, video, graphics) to induce the highest possible “activ-
ity” (aka traffic) to get highest (worst case) power consumption numbers.

Power consumption is meaningful only when related to application use cases.
For this, scenarios are built representing applications in terms of IP active/idle state
sequencing and values of parameters considered for power computation (band-
width, MIPS, etc.). Ideally, scenarios are described independently of implementa-
tion for several reasons:

•	 Same scenario may be run on several hardware platforms (low power or not, high
end or low end…).

•	 Models are built by hardware designers or architects and scenario by software
teams which may not be aware of hardware constraints.

•	 Separation of concerns principle is respected, and thus complexity is highly
reduced.

To mimic real life use cases, there is also a need to run these subsystems concur-
rently to get real traffic scenarios during simulation. For example, in a cell phone,
you could be talking to someone at the same time using GPS to navigate your travel.
Real world devices handle heavy multitasking, and we must reflect such scenarios
during simulation.

9.2 � Dynamic Low-Power Verification Challenges

170

	3.	 Requires coordination with data from physical design. Iteration between
physical design and RTL/verification

For example, you need to coordinate power switching, gating, and isolation num-
bers from physical design with the power strategies you deployed during RTL
design. If they are not in concert, the RTL (and above) architecture needs to change,
and new verification effort needs to be undertaken thereof.

	4.	 DFT and low-power verification. What’s the power consumption in scan mode?

If the power consumption is way too high during maximum toggle scan patterns,
you may need to change your DFT strategy to allow successful testing of the device
on a tester. Verification of DFT architecture and RTL implementation and verifica-
tion thus become ever more important.

	5.	 Dynamic lower power verification at ESL (TOM 2.0)

Dynamic power analysis at RTL is proving to be too late in the design cycle.
Changes in architecture and DFT strategies at RTL require significantly more effort
than making such changes at higher level (transaction level) abstractions. The new
methodologies are centered around building Transaction Level (TLM) Virtual
Platform(s) upon which you can perform dynamic power analysis. We have devoted
the entire Chap. 11 on ESL (Electronic System Level) TLM2.0 (Transaction Level
Modeling—Standard 2.0) on ESL/TLM2.0 technology and methodology.

Analyzing power at ESL is one thing, but how would you verify that your defined
architecture will indeed reduce dynamic power? How will you measure power at
ESL? What kind of vectors (or software application) will you supply at ESL? How
would you measure power vs. performance at ESL? Without such verification, you
would not know if you need to make architectural changes to your design before
committing to RTL.

9.3  �UPF (Unified Power Format)

To address these challenges, among many possible solutions, the industry decided
to come up with a Unified Power Format (UPF) that allows you to describe in a
standard way the power intent of your design.

The idea behind coming up with a power format and simulation support thereof
is to help verify functionality of the device with its power intent architecture without
modifying RTL for power-reducing features such as power gating, power switch,
isolation cells, retention cells, etc... UPF and the supporting simulator are designed
such that the simulator uses UPF to “superimpose” power-related RTL code, based
on UPF, without changing the RTL. If this does not make sense now, hold on. We’ll
soon dive into detail. The idea is also to have a common/unified format that RTL,
gate, and even physical design can understand. Without such unified power format,
the assumptions at RTL could be misinterpreted at gate level and then again at
physical level. And finally, UPF is also an IEEE industry standard and not tied to
any specific simulator or EDA vendor. (Amen to that!)

9  Low-Power Verification

http://dx.doi.org/10.1007/978-3-319-59418-7_11

171

Here’s a high-level summary of UPF.

•	 UPF = Unified Power Format = IEEE 1801–2015 Accelera Standard.
•	 UPF is intended:

–– For specifying power intent for an electronic design.
–– For use in verification of the structure and behavior of the design in the con-

text of a given power-management architecture.
–– For driving implementation of that power-management architecture.
–– The main idea behind UPF is to keep the power specification separate from

the functional specification and to use their ability to express power require-
ments and constraints to tools throughout the RTL-to-GDSII flow.

•	 UPF supports:

–– Incremental refinement of power intent specifications required for IP-based
design flows

•	 Files written to this standard annotate an electric design with the power and
power control intent of that design. Elements of that annotation include:

–– Power supplies: supply nets, supply sets, power states
–– Power control: power switches
–– Additional protection: level shifters and isolation
–– Memory retention during times of limited power: retention strategies and sup-

ply set power states

Why UPF?
•	 Support low-power design techniques through the entire design cycle using a

single file format.
•	 Accurately define and capture lower power design intent, modes, and constraints.
•	 Support design implementation as well as functional verification.
•	 Support physical level design as well (e.g., floor plan and power grids).
•	 Serve as common constraint for all tools (synthesis, APR, timing, DFT).
•	 Allow RTL simulators (or even ESL for that matter) to superimpose UPF on

design without actually modifying the power intent logic of the design.

9.3.1  �UPF Evolution

The Unified Power Format (UPF) was developed to enable modeling of these new
power-management techniques and to facilitate automation of design, verification,
and implementation tools that must account for power-management aspects of a
design. The initial version of UPF, developed by the Accelera Systems Initiative,
focused primarily on modeling power distribution and its effects on the behavior of
a system. In May 2007 that initial version was donated to the IEEE, and in March
2009 a new version, IEEE Std. 1801, was released. That update of UPF added many
new features, including the concept of successive refinement, more abstract model-
ing of system power states, and more abstract modeling of supply networks.

9.3  UPF (Unified Power Format)

172

IEEE Std. 1801–2016 includes enhanced concepts for modeling power states and
transitions at all levels of aggregation; enhanced support for methodologies such as
successive refinement and bottom-up implementation; and a detailed information
model that serves as the basis for enhanced UPF functions and query functions. This
current version also provides support for component power modeling for system-
level (ESL/TLM2.0) power analysis in virtual prototyping applications.

Here’s a simple evolution chart of UPF (courtesy IEEE). Refer to Fig. 9.2. Even
though the effort started in 2007, it is only recently that the UPF methodology has
taken off. All major design companies use UPF for their low-power design and
verification.

The 1801 Full Revision PAR (2015/16) Project was approved at the June 2013
IEEE-SA board meeting. It will extend scope of “Power Intent” up toward system
level and add power modeling.

9.4  �UPF Methodology

To reiterate the discussion above, the Unified Power Format (UPF) provides the
ability for electronic systems to be designed with power as a key consideration early
in the process. UPF accomplishes this by allowing the specification of what was
traditionally physical implementation-based power information early in the design
process—at the register transfer level (RTL) or earlier. Figure 9.3 shows UPF sup-
porting the entire design flow. UPF provides a consistent format to specify power-
design information that may not be easily specifiable in a hardware description
language (HDL) or when it is undesirable to directly specify the power semantics in
an HDL, as doing so would tie the logic specification directly to a constrained power
implementation. UPF specifies a set of HDL attributes and HDL packages to

Fig. 9.2  UPF evolution (courtesy IEEE Standards Association)

9  Low-Power Verification

173

facilitate the expression of power intent in HDL when appropriate. UPF also defines
consistent semantics across verification and implementation to check that what is
implemented is the same as what has been verified.

As shown in Fig. 9.3 UPF methodology, UPF files are part of the design source
and, when combined with the HDL, represent a complete design description: the
HDL describing the logical intent and the UPF describing the power intent.
Combined with the HDL, the UPF files are used to describe the intent of the designer.
This collection of source files is the input to several tools, e.g., simulation tools,
synthesis tools, and formal verification tools. UPF supports the successive refine-
ment methodology where power intent information grows along the design flow to
provide needed information for each design stage.

Simulation tools can read the HDL/UPF design input files and perform RTL
power-aware simulation. At this stage, the UPF might only contain abstract models
such as power domains and supply sets without the need to create the power and
ground network and implementation details.

A user may further refine the UPF specification to add implementation-related
information. This further-refined specification may then be processed by synthesis
tools to produce a netlist and optionally update the UPF files accordingly.

In those cases, where design object names change, a UPF file with the new names
is needed. A UPF-aware logical equivalence checker can read the full design and
UPF files and perform the checks to ensure power-aware equivalence.

Place and route tools read both the netlist and the UPF files and produce a physi-
cal netlist, potentially including an output UPF file.

In the end, UPF is a concise, power intent specification capability. Power intent
can be easily specified over many elements in the design. A UPF specification can

• RTL is augmented with UPF

• RTL + UPF Verification

•

•

•

•

• Gate Level Netlist + UPF Verification

• Physical NL + UPF Verification

Define the Power Architecture for a
given RTL implementation

Ensure that the design will work
correctly under the power management
(UPF) with the defined power
architecture

Synthesis => Netlist. UPF will have to be
updated for NL (manually or automated)

Gate Level NL + UPF => P&R => Physical
Netlist.

Netlist

UPF

Place & Route

S
im

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,
 ..

.

Netlist

UPF

RTL

UPF

Synthesis

Fig. 9.3  UPF methodology

9.4  UPF Methodology

174

be included with the other deliverables of intellectual property (IP) blocks
and reused along with the other delivered IP. UPF supports various methodolo-
gies through carefully defined semantics, flexibility in specification, and, when
needed, defined rational limitations that facilitate automation in verification and
implementation.

9.4.1  �Low-Power Design Terminology/Definitions

Power Domain
•	 Independently powered regions.
•	 Enable application of different power reduction techniques in each region.
•	 A collection of instances that are treated as a group for power-management pur-

poses. The instances of a power domain typically, but do not always, share a
primary supply set. A power domain can also have additional supplies, including
retention and isolation supplies.

Composite Power Domain
A power domain consisting of subordinate power domains called subdomains. All
subdomains in a composite domain share the same primary supply set.

Power Supply Network
•	 Abstract description of power distribution (ports, nets, sets, and switches)

Power State
•	 A subset of the functional states of an object that have the same characteristics

with respect to power supply (for a supply set) or power consumption (for a
power domain, composite domain, group, model, or instance)

Power State Table
•	 The legal combinations of states of each power domain. Table that specifies the

legal combinations of supply states for a set of supply objects (supply ports, sup-
ply nets, and/or supply set functions)

State Retention
•	 To save essential data when power is off. Enhanced functionality associated with

selected sequential elements or a memory such that memory values can be pre-
served during the power-down state of the primary supplies

•	 To enable quick resumption after power up

Isolation
•	 To ensure correct electrical/logical interaction between domains in different ON/

OFF power states.
•	 Isolation cell is an instance that passes logic values during normal mode opera-

tion and clamps its output to some specified logic value when a control signal is
asserted.

9  Low-Power Verification

175

Level Shifting
•	 To ensure correct communication between different voltage levels.
•	 Level shifter cell is an instance that translates signal values from an input voltage

swing to a different output voltage swing.

9.5  �UPF: Detailed SoC Example

We will go through a complete SoC example and create a step-by-step UPF for it.
The design has SoC as the top-level module which instantiates the Video Sub block,
Video_SB, and the Audio Sub block, Audio_SB. We further show hierarchy under
Video_SB.

9.5.1  �Design/Logic Hierarchy Navigation

Let us first see how UPF allows us to specify the hierarchy of a design. Note that in
this hierarchy, you may also include the testbench as your top-level module. That
testbench module can go above the “SoC” module or can be hierarchical to the side
of it (horizontal to it).

In this design, SoC is the top-level module that instantiates the Video and Audio
subsystems. Under Video there is a logic hierarchy. Let us see how UPF allows us
to define this hierarchy.

Note that all the names in Fig. 9.4 are instance names and not the module names.
Consider Video_SB as our DUT for this illustration. To set the design (DUT) top,

the following command needs to be used:

set_design_top SoC/Video_SB

SoC

Audio_SBVideo_SB

V1

LV1 LV2 LV3

V2

LV4

Fig. 9.4  UPF: design/logic hierarchy navigation

9.5  UPF: Detailed SoC Example

176

Video_SB now becomes the “current” scope for the subsequent commands. Now
you can set a scope under this design_top and change it with the following
commands.

To leave the scope to where it is, use the following command. Note that “.” keeps
the current scope unchanged.

set_scope .

To set the scope to “LV1”:

set_scope V1/LV1

To change the scope one level up (i.e., the parent of the current scope, which is V1):

set_scope ..

So, now the scope is “V1.”
To change the scope to ‘LV2’ and since the current scope is ‘V1’, we simply do

the following:

set_scope LV2

9.5.2  �Power Domain Creation

Now, let us see how we create power domains. In our example design (Fig. 9.5), we
have identified the following power domains. All power domains are under the
design_top Video_SB. The four domains are:

	1.	 Video_SB/Video_PD
	2.	 Video_SB/V1_PD
	3.	 Video_SB/V2_PD
	4.	 Video_SB/LV12_PD
	5.	 Video_SB/LV34_PD

So, how does UPF allow us to identify these power domains?
First, set the scope to Video_SB.

set_scope Video_SB

Then create power domain Video_PD with the following UPF command. Note
that -include_scope tells UPF to create Video_PD power domain in current scope.

create_power_domain Video_PD -include_scope

9  Low-Power Verification

177

Now create power domain V1_PD. This command takes the instance V1 out of
the hierarchy of Video_SB and creates its own power domain called V1_PD. In
other words, in the UPF world, a more specific command takes over a more generic
command. In this case, specifically calling “V1” takes precedence over the power
domain created above (“Video_PD”) which would have included the entire
hierarchy.

create_power_domain V1_PD -elements {V1}

On similar thought process, the following creates power domain LV12_PD for
instances LV1 and LV2.

create_power_domain LV12_PD -elements {V1/LV1 V1/LV2}

In similar fashion, you can create power domains for the hierarchy under “V2.”

create_power_domain V2_PD -elements {V2}
create_power_domain LV34_PD -elements {V2/LV3 V2/LV4}

Here’s another example of the same design where the power domains are created
slightly different. This is to illustrate how UPF helps identifying power domains in
different hierarchies.

Fig. 9.5  UPF: power domain creation – 1

9.5  UPF: Detailed SoC Example

178

The UPF commands to identify power domains in Fig. 9.6 are:

set_scope Video_SB
create_power_domain Video_PD -include_scope
create_power_domain V_PD -elements {V1 V2}
create_power_domain LV_PD -elements {V1/LV1 V1/LV2 V2/LV3 V2/LV4}

9.5.3  �Supply Power to the Power Domains: Supply Network

Okay, now let’s see how we supply power to these power domains (Fig. 9.7).
Creating the supplying power requires the following four commands:

create_supply_port
create_supply_net
connect_supply_net
set_domain_supply_net

Let’s look at each and see how they apply to the power domains shown in Fig. 9.7.

Fig. 9.6  UPF: power domain creation—2

9  Low-Power Verification

179

9.5.3.1  �create_supply_port

As the name suggests, create_supply_port creates the power/voltage ports for the
design. In this design, we have the power (VDD) and ground (VSS) ports. This is
how they are declared in UPF.

create_supply_port VDD -direction in
create_supply_port VSS -direction in

9.5.3.2  �create_supply_net

Now that we have created the supply ports, we need two nets to connect them to the
design instances. So, first we create two nets. Here’s how:

create_supply_net Pwr -domain Video_PD
create_supply_net Gnd -domain Video_PD

9.5.3.3  �connect_supply_net

Now that we have created the supply ports, we need to connect those. Here’s how:

connect_supply_net Pwr -ports (VDD)
connect_supply_net Gnd -ports (VSS)

Fig. 9.7  UPF supply network

9.5  UPF: Detailed SoC Example

180

9.5.3.4  �set_domain_supply_net

We now must establish the domain name for these nets. Here’s how:

set_domain_supply_net Video_PD \
-primary_power_net Pwr \
-primary_ground_net Gnd

The diagram shows these nets entering the Video_SB block. But this is only a
graphics representation. In reality, these nets are connected to all module instances
within Video_SB block. Domain supply nets are implicitly connected. The state of
these Pwr and Gnd sources determine during simulation if they are ON/OFF and the
resulting logic under both circumstances.

Now, what if you want to extend these supply nets to the other sub blocks of the
hierarchy? You can either create new VDD and VSS ports for the sub block (e.g.
V_PD) or “reuse” the already declared supply nets and extend them to the new sub
block power domain. The following section describes the commands to do just that.

9.5.3.5  �create_supply_net -reuse

Referring to Fig. 9.8:

create_supply_net Pwr -reuse -domain V_PD
create_supply_net Gnd -reuse -domain V_PD

Fig. 9.8  UPF: supply network reuse

9  Low-Power Verification

181

And again, as shown above we must establish the domain name for these nets.
Here’s how:

set_domain_supply_net V_PD \
-primary_power_net Pwr \
-primary_ground_net Gnd

9.5.4  �Power Switch Creation

So, how do you turn power ON/OFF for a given power domain? You need a power
switch for that embedded in the power domain that needs to be turned ON/OFF
(Fig. 9.9).

First, we create a “switched” supply net called VDDsw. Here we plan to switch
ON/OFF “vdd.”

create_supply_net VDDsw -domain V_PD

Once that is done, the gist of power switch creation comes into picture. Here’s
how you do it. The explanation follows.

Fig. 9.9  UPF: power switch creation

9.5  UPF: Detailed SoC Example

182

9.5.4.1  �create_power_switch

create_power_switch SW -domain V_PD \
-input_supply_port {pwin Pwr} \
-output_supply_prt {pwout VDDsw } \
-control_port {swctrl sw_ctrl} \
-on_state {Pwon swctrl} \
-off_state {Pwoff !swctrl}

First, we create a power switch called SW in the domain V_PD. Then we assign
input and output to this switch. As you note in Fig. 9.9, VDDsw is the output of the
switch which is then connected to all the instances under power domain V_PD. The
input is our original Pwr net.

Second, we need to create the control switch port. We do that using the command
-control_port called sw_ctrl as shown in Fig. 9.9.

Finally, we need to declare, when the switch is ON and when it’s OFF. That’s
done using the commands -on_state and -off_state. The switch state is ON when
swctrl is positive, and it’s OFF when swctrl is negative.

Rather intuitive, you declare such a power domain network without affecting (or
rather physically connecting) all these nets, ports, and switches. During simulation,
they are virtually connected not affecting RTL. Such a methodology allows you to
try different power domain and power switch combinations before finally commit-
ting to one strategy that will go to final silicon.

To complete the story, as before, you need to establish the domain in which the
power supply nets belong.

set_domain_supply_net V_PD \
-primary_power_net VDDsw \
-primary_ground_net Gnd

Fig. 9.10  UPF: supply port states

9  Low-Power Verification

183

9.5.5  �Supply Port States

Let us create one more supply port named VDD2 and connect it to the power domain
LV_PD (Fig. 9.10). The first thing to note here is that we did not create a supply net
(as we did for supply port VDD and ground port VSS in previous examples). A port
name can be used where a net name is allowed in that you can directly connect the
supply/ground ports to the instances of a given power domain.

9.5.5.1  �add_port_state

Now that the supply for each power domain has been specified and connected to the
instances in their respective domains, we need to specify the values these supply
ports can take on. These “values” are referred to as port “states.”

To define the state of a port, we use the following command:

add_port_state VDD -state {ON_10 1.0}

This command states that VDD is in full ON state with 1.0 volts. Since ON state
is the only state defined for VDD, this supply is always ON.

For the internally switched voltage VDDsw (output of switch SW), we should spec-
ify both the ON and OFF states (since it is switched). Here’s the command to do that.

add_port_state SW/VDDsw -state {ON_10 1.0} -state {OFF off}

Note that a positive (or zero) voltage value indicates an ON state while “OFF”
states the OFF state of the port.

Similarly, for the VSS, the common ground port, we can specify that it’s at 0
volts as follows:

add_port_state VSS -state {ON_00 0.0}

This states that VSS is full ON but at 0.0 volts.
Note also that the “labels” ON_10, ON_08, etc. are user defined and have no

bearing on the state of the port.

9.5.6  �Power State Table

In a typical SoC, there are tens of power domains, switched or unswitched. It is hard
to manually keep track of all the different combinations of the state. You can always
create a separate XL spreadsheet and constantly synchronize your UPF state defini-
tions with that in the XL. But this is very error prone. Note that such a state table is
useful in your state retention and isolation strategy. That will be described in the
coming sections.

9.5  UPF: Detailed SoC Example

184

Here are the commands to create a Power State Table:

create_pst
add_pst_state

Let us assume with the table in Fig. 9.11 that we want to create and see how
above commands help us do just that.

9.5.6.1  �create_pst

create_pst defines the header of the table. It provides the supply port names, as
follows:

create_pst PST1 -supplies {VDD, VDDsw, VDD2, VSS}

These values define the header (and columns) of the table.

9.5.6.2  �add_pst_state

Now, let’s add the Power State Table states for each of the state that the SoC will be
in, namely, Normal, Sleep, and Hibernate. These states correspond to each of the
supply port (net) specified in the header. This is how that is done:

add_pst_state Normal -pst PST1 -state {ON_10, ON_10, ON_08, ON_00}
add_pst_state Sleep -pst PST1 -state {ON_10, OFF, ON_08, ON_00}
add_pst_state Normal -pst PST1 -state {ON_10, OFF, OFF, ON_00}

9.5.7  �State Retention Strategies

State retention means that the “state” of the logic in a power domain is preserved
before the power is shut down. When power is brought back up again, the state of
the logic before power down is restored. This helps with very fast recovery of the

Video_PD V_PD LV_PD

State \ Supply

Normal

Sleep

Hibernate

VDD

ON_10

ON_10

ON_10

VDDsw

ON_10

OFF

OFF

VDD2

ON_08

ON_08

OFF

VSS

ON_00

ON_00

ON_00

Fig. 9.11  UPF: power state table

9  Low-Power Verification

185

block from power down to power-on state. Retention is also required if you simply
cannot bring the block into the state that it was before it was powered down.

Let us continue with the state table of Fig. 9.11. This table tells us which power
domains need state retention (if), isolation, and level shifting.

9.5.7.1  �set_retention

The power domain V_PD is OFF in Sleep and Hibernate state (Fig. 9.12). Let us
assume that we do need to retain the state of the V_PD block so that the V_PD block
can restart quickly as soon as it comes out of Sleep or Hibernate state. That’s done
as follows:

set_retention V_PD_retention \
-domain V_PD \
-retention_power_net Pwr \
-retention_ground_net Gnd

This command specifies that all state elements of the V_PD power domain logic
must be retained when it enters either the Sleep mode or the Hibernate mode. The
retention logic should use the Pwr and Gnd nets in that block. Note that you are
powering the retention registers using the ALWAYS_ON VDD and VSS nets and not
the switched power nets. The switched power supply powers the rest of the logic in
the V_PD power domain. Figure 9.12 shows the retention registers in blocks V1 and
V2 in V_PD power domain. They are powered using VDD and VSS and will remain
powered ON when V1 and V2 of the V_PD domain are shut OFF.

Fig. 9.12  UPF: state retention strategy

9.5  UPF: Detailed SoC Example

186

9.5.7.2  �set_retention_control

The set_retention_control command adds control to these retention registers, as
shown in Fig. 9.12. The command for our design is as follows:

set_retention_control V_PD_retention \
-domain V_PD \
-save_signal {SRctrl posedge} \
-restore_signal {SRctrl negedge}

Note that we did not use retention registers in the LV_PD domain. This is just to
point out that you don’t have to have retention strategy for each power domain. Only
if the state prior to shut down cannot be restored quickly (or reinitialized) that we
need retention registers.

9.5.8  �Isolation Strategies

9.5.8.1  �set_isolation

As you notice in our state table (Fig. 9.13), V_PD domain is OFF when Video_PD
domain in ON. That means when V_PD turns OFF, its outputs (inputs to Video_PD)
cannot be in random (unknown) state. They must be isolated from V_PD outputs
and maintained at a predictable known state. Video_PD needs to be designed such
that when V_PD goes into OFF state and that its outputs are isolated that it functions
as expected.

The set_isolation for our design (Fig. 9.14) is shown below.

set_isolation V_PD_isolation \
-domain V_PD \
-applies_to outputs \
-clamp_value 0 \
-isolation_power_net Pwr \
Isolation_ground_net Gnd

Video_PD V_PD LV_PD

State \ Supply

Normal

Sleep

Hibernate

VDD

ON_10

ON_10

ON_10

VDDsw

ON_10

OFF

OFF

VDD2

ON_08

ON_08

OFF

VSS

ON_00

ON_00

ON_00

Fig. 9.13  State table showing isolation requirements

9  Low-Power Verification

187

This command specifies that the power domain V_PD’s outputs need to be iso-
lated. -domain V_PD and -applies_to outputs facilitate this function. We also need
to specify at what logic level the outputs of isolation cells will be “clamped” to,
once the power is turned OFF. In our design, we have chosen the value logic 0. And
finally, we specify the power and ground nets that will power the isolation cells
when V_PD power is turned OFF.

9.5.8.2  �set_isolation_control

set_isolation_control command specifies the control signals to be used to enable
isolation cells when V_PD is turned OFF. We also need to specify the location
where these cells will be inserted. Will they be inserted within the V_PD block or its
parent block Video_PD? All this is accomplished by the following command:

set_isolation_control V_PD_isolation \
-domain V_PD \
-isolation_signal vISO \
-isolation_sense high \
-location parent

This command specifies that we want to apply isolation control to the domain
V_PD. The control signal name is vISO, and the control will be enabled when vISO
is in logic high state. Finally, we specify that the isolation cells should be placed in
V_PD’s parent block. That block in our design is Video_PD. Hence, as shown in
Fig. 9.14, the isolation cells are placed in the Video_PD block and powered by Pwr
and Gnd nets.

Fig. 9.14  UPF state isolation strategy

9.5  UPF: Detailed SoC Example

188

Note that -location self command dictates that the isolation cells be placed in the
power domain itself. In other words, if we had specified -location self in the above
command, the isolation cells would be places in V_PD domain itself.

9.5.9  �Level Shifting Strategies

As we can see from our state table (Fig. 9.15), the voltage of V_PD domain is higher
(different) than the voltage for domain LV_PD. They can both be powered up at the
same time, but they operate at different voltage levels. For correct functioning of the
circuit, we need a voltage level shifter. UPF allows you to insert level shifters with
the following command:

set_level_shifter LV_PD_LS
-domain LV_PD \
-threshold 0.1 \
-applies_to both \
-rule both \
-location self

This command specifies that level shifters should be added to the inputs and
outputs of the LV_PD domain, if the threshold between the two neighboring
domains (i.e., LV_PD and V_PD) is at least 0.1 volts. “-applies_to both” indicates
that the level shifters should be applied to both the inputs and the outputs. And
“-rule both” specifies that the level shifters should be able to level shift both from
High_to_low and Low_to_high. Finally, “-location self” indicates that the level
shifters should be places in the LV_PD domain itself. Note that you do not need a
control signal for level shifters to work. They simply sample the voltage and level
shift them. Level shifters do require power (obviously), and UPF 1.0 explicitly sup-
plies power to level shifters from the source and sink logic. But this limitation is
removed from UPF 2.0, and you can explicitly provide Pwr and Gnd information for
the level shifters.

The following Fig. 9.16 shows the inserted level shifters:

Video_PD V_PD LV_PD

State \ Supply

Normal

Sleep

Hibernate

VDD

ON_10

ON_10

ON_10

VDDsw

ON_10

OFF

OFF

VDD2

ON_08

ON_08

OFF

VSS

ON_00

ON_00

ON_00

Fig. 9.15  Level shifting strategy

9  Low-Power Verification

189

9.6  �Power Estimation at Architecture Level

One of the problems with power estimation at RTL is that it can be too late to make
architectural changes to meet power requirements. Changes to internal memories,
register files, interconnect topology, etc. are very time-consuming, error prone, and
difficult overall. The burden on verification also increases since the testbench archi-
tecture may have to change as well and certainly you need to write new tests, mod-
ify response checkers (scoreboard), etc. In short, changing the RTL architecture and
verifying it are a lot harder than making the same changes at Electronic System-
Level architecture of an ASIC.

What about IP-based SoC designs? The typical system design now has known a
paradigm shift with the reuse of Intellectual Properties (IP). An application can be
now developed in a very short time with the association of existing MPSoC platforms.
Although this design methodology enhances the designer efficiency and reduces the
time to market, its weak point remains the consideration of the power consumption
metric. Current system power estimation is obtained after design place and route or
developing power models at the RTL level. At these levels, when the power estimation
exceeds the power budget, the designer must backtrack on architecture and algorithm
parameters. This operation is time-consuming, and the power estimation is not always
obvious. Moreover, this estimation is not useful to design a new system or extend it
for a complex embedded system. To improve the design flow effectiveness, it is neces-
sary to adapt new approaches for considering the power metric in the design flow.

Reducing power consumption has undeniably become a popular subject in the
EDA (Electronic Design Automation) field owing to its criticality. The issue is
tricky because the goal of the existing flows is basically to implement some func-
tionality, whereas power appears to be a nonfunctional property. It is a ubiquitous

Fig. 9.16  UPF: level shifter strategy

9.6 � Power Estimation at Architecture Level

190

aspect that cannot be dealt with in a definite area of the design or at a given level in
the flow. Hence trying to combine advanced low-power techniques and complex
functionality implementation taking advantage of the current design methodologies
faces serious limitations (Kaiser).

For instance, assessing the impact of applying a local power reduction technique
on the global power consumption of a system in real life usage, meaning when the
application software is running, is a tough task. The designers have indeed limited
insight in the actual processing power repartition, in both space and time. Therefore,
they may waste their time altering the design with nonsignificant overall power sav-
ing while taking the risk of introducing errors and missing the true opportunities for
substantial power reduction. What is truly missing here is a consistent approach for
low-power design at the ESL or architectural level (Report, September 2008).

TLM2.0 methodology (aka Electronic System Level, ESL methodology) allows
you to build transaction level platform (aka Virtual Platform) in SystemC. This meth-
odology is described in detail in Chap. 11. In short building a SystemC/TLM level
model of the SoC runs orders of magnitude faster than its RTL counterpart. This
allows quick trial and error of power estimation that can come close to 70–80% in
ballpark of the RTL estimation. Transaction level traffic pattern recognition (e.g., IO
traffic vs. memory traffic) is one of the ways to power estimate at TLM2.0 Virtual
Platform level. There are other methods also available to reach the goal of power esti-
mation and thereby power optimization at TLM2.0 level, such as Dynamic Voltage
and Frequency Scaling (DVFS). These topics are beyond the scope of this book.

The graph in Fig. 9.17 shows the ability to optimize power at architectural level
is almost 80%. This is because the Virtual Platform level architecture is much easier
to modify and thereby improve power before committing to RTL.

Power Optimization Potential

Architectural

Synthesis

Gate

Layout

According to a study by LSI Logic, techniques available at the RTL synthesis phase have the
ability to reduce power by 20 percent; those at the gate level offer a 10 percent

reduction; while those at the layout level can reduce power by only 5 percent. Waiting
until the RTL phase to begin optimizing for power is a wasted opportunity because power

usage can be reduced by 80 percent at the ESL.
Souce Mentor / LSI

0% 20% 40% 60% 80%

10 LSI
Source: LSI Logic

100%

Fig. 9.17  Power estimation at architectural level

9  Low-Power Verification

http://dx.doi.org/10.1007/978-3-319-59418-7_11

191

9.7  �UPF Features Subset (IEEE 1801–2009)

Refer to Fig. 9.18.

Fig. 9.18  UPF features—IEEE 1801–2009

9.7 � UPF Features Subset (IEEE 1801–2009)

193© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_10

Chapter 10
Static Verification (Formal-Based Technologies)

Chapter Introduction
Static verification is an umbrella term, and there are many different technologies
that fall under it, for example, Logic Equivalence Check (LEC), Clock Domain
Crossing (CDC) check, X-state verification, low-power structural checks, ESL ⇔
RTL equivalency, etc. This chapter will discuss all these topics and a lot more
including state-space explosion problem, role of SystemVerilog Assertions, etc.

10.1  �What Is Static Verification?

Static verification (compared to dynamic verification using simulation-based tech-
nologies) is the overarching term for a collection of techniques that use static analy-
sis based on mathematical transformations to determine the correctness of hardware
or software behavior in contrast to dynamic verification techniques such as simula-
tion. As design size and simulation time have increased, verification teams have
looked for ways to reduce the number of vectors needed to exercise the system to an
acceptable degree of coverage.

SoC design complexity demands newer and better verification methods to accel-
erate verification and debug, as well as reduce overall schedule duration and improve
schedule predictability. The verification of complex chips and systems is a highly
challenging task. Techniques to reduce the verification schedule, improve predict-
ability, and accelerate debug are highly desired by engineers and management alike.

Even the most carefully designed UVM testbench is inherently incomplete since
constrained random methods can’t hit every corner case. Unfortunately, this means
that even after 100% functional coverage is achieved, there can still be showstopper
bugs hiding in unimagined state spaces. Hence, formal verification plays a vital role
in the verification of today’s complex designs. Formal tools statically analyze a
design’s behavior with respect to a given set of properties (assertions), exhaustively

194

exploring all possible input sequences in a breadth-first search manner to uncover
design errors that would otherwise be missed.

One way to approach this problem is to move the bug identification earlier in the
cycle as much as possible. When bugs are caught early, they are easier, faster, and
cheaper to triage, debug, and fix. The problem is finding the tougher hard-to-
stimulate bugs that result from seemingly impossible-to-think-of corner case sce-
narios. This is where formal methods come in, as they are less reliant upon the user
to think of the potential scenarios that could trigger bugs. When combined with
debugging tools and methods, the true power of formal verification is realized.

Static formal methods are techniques that can perform analysis on the design
independent of or in conjunction with simulation and have the power to identify
design problems that can otherwise be missed until very late in the project schedule,
or even in the manufactured silicon, when changes are expensive and debug is
highly challenging and time-consuming. When applied early in the design cycle,
these methods can identify RTL issues such as functional correctness and complete-
ness well before the simulation test environment is up and running.

The most fundamental difference between simulation and static formal is that the
latter is implemented using mathematical techniques. This approach does not
require a vector set and therefore does not require a testbench to be written to exer-
cise the design. This saves time right away. However, the main advantage of this
approach is that typically, a vector set is written to exercise only the behavior of the
design in its expected mode of operation. In reality, the input to a block often devi-
ates from the designer’s initial expectations, and the design is then in an untested
territory. There are of course practical reasons for this: it is hard to “expect the
unexpected.” SystemVerilog Assertions (properties) can test the design in all possi-
ble modes of operation and therefore can isolate bugs and undesired behavior that a
designer might not have thought to test.

Additional applications of static verification technology can verify SoC connec-
tivity correctness and completeness and help isolate differences between two dispa-
rate versions of the RTL design. Once the simulation environment is available,
formal methods can complement simulation to add additional analysis for even bet-
ter results, for example, for unreachable coverage goals. By employing formal tech-
niques at the appropriate time in the design and verification process, bugs can be
caught significantly earlier in the project, including hard-to-find bugs that typically
elude verification until late in the project. The result is a higher quality design and
overall schedule improvements as well as better predictability.

Of course, static tools are not that new to us, and we can compare this approach
with something much more familiar, namely, “Static Timing Analysis.” A timing
simulation cannot possibly provide certainty we have hit the slowest set of vectors.
If we don’t pick the worst-case set of vectors, we won’t get a worst-case result. It’s
therefore going to be impossible on a large design to learn much with timing simu-
lation. The static timing tool will automatically isolate any paths that are too slow.
So, wouldn’t it be great if we could do the same thing for the design’s
functionality?

That’s how the static formal technology was born.

10  Static Verification (Formal-Based Technologies)

195

10.2  �Static Verification Umbrella

Let us first take a quick snapshot of the umbrella of static verification
technologies.

	1.	 Static formal verification (i.e., see that a piece of logic does not fail under any
given input condition, and do this statically without the need for input simulation
vectors).

Note: This type of verification is also known as model checking, static func-
tional verification, or property checking. We will use static formal as the pre-
ferred terminology in this book.

	2.	 Static formal plus simulation hybrid verification.
	3.	 Logic Equivalence Check (LEC) (discussed in Sect. 5). This is where you for-

mally (i.e., without vectors) check the following for equivalency:

	a.	 RTL ⇔ RTL (critical path optimization, for example)
	b.	 RTL ⇔ gate (post-synthesis)
	c.	 Gate ⇔ gate (clock tree insertion, delay buffers for hold, etc.)
	d.	 Layout vs. schematic (LVS)

	4.	 Clock domain crossing verification (Chap. 8).
	5.	 RTL lint.
	6.	 Structural checks.
	7.	 Low-power structural checks.
	8.	 X-state verification.
	9.	 Connectivity verification.

There are a couple of big stumbling blocks with dynamic simulation that we have
been using for ages. As the design complexity and size grow, these simulation tech-
niques are dragging design verification to its knees.

	1.	 Simulation runs very slow (100Hz–1Khz, if you have the fastest server, no other
processes running, truck load of dynamic and static memories, and you are very
lucky).

	2.	 Even with the coverage tools available, one cannot guarantee that you have fully
exhausted all verification possibilities for a given piece of logic, for example,
something as simple as an asynchronous FIFO or as complex as a second-level
cache coherency algorithm.

	a.	 Coverage is only as good as your model of the coverage. If you forgot to put
all coverpoints, your coverage will be 100% before it really is.

	3.	 Acceleration and emulation do speed up simulation by orders of magnitude, but
they require test vectors. In other words, if you didn’t write enough tests for all
possible corner cases, what good will it do that you simulate your vectors fast?
And what about compile times? You run a simulation in seconds and then wait
for hours for compile to complete for the next round of simulation.

10.2  Static Verification Umbrella

http://dx.doi.org/10.1007/978-3-319-59418-7_8

196

10.3  �Static Formal Verification (Aka Model Checking Aka
Static Functional Verification)

What we need is a way to “automatically” verify your logic under test with formal
proof. Simply put, we need a tool that applies all possible combinations of input
both in combinatorial as well as temporal domains. In other words, given a model
of a system, exhaustively and automatically check whether this model meets the
given specification.

So, what does static formal flow look like? Referring to Fig. 10.1:

	1.	 Write a property in SystemVerilog Assertion (SVA) language (or PSL—Property
Specification Language or OVL for that matter).

	2.	 Supply assumptions (SVA “assume” statement) to the static formal tool.
	3.	 The static formal tool mathematically derives a model for your RTL logic under

test.
	4.	 It applies all possible “stimuli” in combinational and sequential domain. It veri-

fies that the property does not fail under any circumstance. It exercises all pos-
sible “logic cones” of a given logic block and proves that the assertion(s) are not
violated.

	5.	 If the property/assertion fails, it will give the exact scenario under which the
property fails. You can then simulate this scenario and debug the error at hand.

This eliminates the need for a testbench and vectors. It makes sure that the logic
never fails under any circumstance.

However, currently static formal is limited to small design sizes because of the
so-called logic cone state-space explosion. When the static formal algorithm evalu-
ates the logic under test and creates a model (let us say temporal 100 clocks and
combinational 100,000 gates), its ability to explore all possible corners of logic hits
the so-called state-space explosion problem. The number of automatically created
input stimuli combinations reaches a prohibitive limit and would take forever to
prove that the SVA properties for a given logic block never fail. In addition, as
shown in Fig. 10.2, the number of “logic cones” to cover all states in the temporal
space will explode, and there isn’t enough memory in the universe to cover all
states. So, currently (as of the publication of this book), you need to subdivide your
logic into smaller chunks of logic, write SVA properties for those blocks, and run
static formal tool against those blocks.

10.3.1  �Critical Logic Blocks for Static Formal

For static formal to be effective in your verification methodology, you should con-
sider targeting the following critical areas first. That will keep the logic block small
and help verification tremendously because these areas are trouble porn and hard to
reach with simulation alone.

10  Static Verification (Formal-Based Technologies)

197

F
ig

. 1
0.

1 
St

at
ic

 f
or

m
al

 v
er

ifi
ca

tio
n

(a
ka

 m
od

el
 c

he
ck

in
g

or
 s

ta
tic

 f
un

ct
io

na
l v

er
ifi

ca
tio

n)

10.3  Static Formal Verification…

198

10.3.1.1  �Control Logic

SoC interconnect such as point-to-point connection bus or NoC (Network on Chip),
buffers, and memories is logic structures usually controlled by arbiters, FIFOs, and
other complex control logic. These design elements are better understood at micro-
architecture level. But DV normally focuses at high-level specifications. Directed
tests go for end-to-end scenarios and hope that the underlying control structures will
be verified as part of it. But that’s not the case. For example, with end-to-end tests,
you may verify only a few of the conditions of an asynchronous FIFO. It would be
much better to throw the asynchronous FIFO at the static formal tool and vet it out
completely. Hence, to cover all the corner cases of control logic, carve out small
pieces of control logic, write assertions and assumptions for these blocks, and apply
static formal to test out each corner of the logic.

10.3.1.2  �Inter-module Interfaces

There are thousands of inter-module interfaces in each SoC. Each block “assumes”
certain interface protocol from the next block. Many a time, these assumptions are
either wrong or never exercised. Again, end-to-end tests may or may not cover all
cases of inter-module interface protocol. Hence, SystemVerilog Assertions must
be written for checking the inter-module interface protocol. Once such assertions
are written, small subsystems comprising of few of the low-level blocks can be
static formally verified. This will guarantee that the inter-module interfaces sur-
vive under all possible input conditions. Once such low-level protocols are veri-
fied, your top level end-to-end tests will pass much more comfortably. You will
have much better confidence in inter-module interface correctness with this
approach.

Bugs

State Space

Initial State

Fig. 10.2  State-space of static formal verification

10  Static Verification (Formal-Based Technologies)

199

10.3.1.3  �Finite-State Machines

Code coverage will tell you if the states of a state machine are verified. But it will
not tell you if all the state transitions of the state machine have been verified and
that they are the correct state transitions. SystemVerilog Assertions must be written
to check for state transitions, stuck-at states, live locks, or dead locks between two
state machines, etc. It will be very time-consuming for directed (or random con-
strained for that matter) tests to cover all the state transitions and their corner cases.
That’s where static formal proves its usefulness. Take small subsystems of control
logic or SoC peripheral interfaces where state machines play a critical role, and
submit these smaller blocks to static formal. That way you have verified all possible
state transitions and that those are valid state transitions. Please refer to Chap. 6 to
understand in detail how to write such assertions.

10.3.1.4  �Data Integrity

Devices such as bus bridges, DMA controllers, routers, and schedulers transfer data
packets from one interface to another. One goal of verification is to ensure the integ-
rity of the data during these transfers. Data packets must transfer correctly—even if
they are reordered, demultiplexed and multiplexed, or segmented and reassembled
during the process. Unfortunately, in a system-level simulation environment, data
integrity mistakes are not readily observable. Usually problems are not evident until
corrupted data is used. With assertions, the integrity of data along the entire data
transfer path can be checked. A lost or corrupted data packet is detected immedi-
ately. Static formal is the perfect tool to deploy for such data paths.

10.3.2  �SystemVerilog Assertions and Assumptions for Static
Formal and Simulation

Figure 10.3 shows how SystemVerilog Assertions and assumptions play a role in
static formal and simulation. SV “assume” statement, even though valid for sim-
ulation, is mainly invented for static formal. As we discussed before, to prevent
the so-called state-space explosion problem with static formal tools, you need to
“assume” certain inputs to be in certain logic state before you submit the block
to static formal. Hence, you notice that the SV assumptions are being fed to the
static formal part of Fig. 10.3. SV Assertions are useful for both static formal as
well as simulation. This is one of the key advantages of SVA in that you write it
once and use it for both the static formal and the simulation methodology
components.

10.3  Static Formal Verification…

http://dx.doi.org/10.1007/978-3-319-59418-7_6

200

10.3.3  �SystemVerilog “Assume” and Static Formal Verification

This is an interesting operator. As shown in Fig. 10.4, “assume” specifies the prop-
erty as an assumption for the environment. They may be used by simulators to
constrain the random generation of free checker variable values or by formal tools
to constrain the formal computation. The most useful environment for “assume” is
that of static formal verification. As we have been discussing, static formal is a
method whereby the formal algorithm exercises all possible combinational and
sequential possibilities of inputs to exercise all possible “logic cones” of a given
logic block and checks to see that the assertion holds. During such verification if
you do not specify any constraints (i.e., for a 5 input (a, b, c, d, e) block and 100
clock temporal range, if you don’t specify any constraints such as “assume” a = 0
and b = 1), then the static formal will try to explore all possible combinations of the
5 input both in combinatorial and temporal domain. Without any constraints pro-
vided via “assume,” the static formal tool may experience something called “state
space explosion” problem. As the description suggests, the tool may give up if too
many inputs are unconstrained. This is where the “assume” statement comes into
the picture.

Fig. 10.3  Static formal, static formal + simulation hybrid, and simulation-only-based methodologies

10  Static Verification (Formal-Based Technologies)

201

10.3.4  �Static Formal vs. Simulation

Having said all this, you may be thinking, “Is the author suggesting that we com-
pletely change our verification strategy in favor of something based on a static
approach?” Well we know that’s neither practical nor plausible. As mentioned
above, the static formal only works on relatively smaller blocks of logic because of
the state-space explosion problem. A static formal methodology is of most benefit
at block level, where bugs and undesired behaviors can be eliminated at this early
stage. The clean blocks would then be integrated together, and simulations would
still need to be run on the entire system as always. The advantage of using this
approach is that the block-level bugs have already been addressed and will not have
to be fixed during system simulation time. This will ultimately make the use of
simulation resources far more efficient.

Figure 10.5 (Andrew Jones and Jeremy Sonander) shows a typical advantage
scenario of static formal vs. simulation. Static formal verifies block-level logic
much more exhaustively since it applies all possible combinations of inputs to the

Fig. 10.4  SystemVerilog “assume” for static formal

10.3  Static Formal Verification…

202

block and proves that the assertions/properties applied to the block never fail. Static
formal also runs thousands of orders of magnitude faster than simulation. End result
is that you ship your SoC earlier with high level of confidence, less risk, and cost.
Simulation-based verification will not only take longer, but you may not even be
sure of having found all the corner case bugs.

10.4  �Static Formal + Simulation Hybrid Verification
Methodology

So, what do we do about this state-space explosion problem that limits the size of
the logic block that can be verified using static formal methods/tools? That’s where
static + simulation hybrid technology/tools come into picture.

To reduce the logic cone that needs to be formally evaluated, the static + simula-
tion technology strives to reduce the number of combinational and temporal domain
“vectors” for a given logic block. A simulator that deploys this technology will
simulate the logic block to reach a certain known state and thereby constrain (i.e.,
“assume”) the inputs to be in a certain range. The static formal then takes over with
those assumed input logic states and formally verifies all “remaining” combinations
of inputs to the logic block to see if any of the SVA properties of the block fail.

Figure 10.6 shows that simulation is run on logic leading to the logic under for-
mal. Simulation results in known states on the input of the logic cone of the state

Fig. 10.5  Static formal vs. simulation (Andrew Jones and Jeremy Sonander)

10  Static Verification (Formal-Based Technologies)

203

space that formal needs to verify. These states are considered the initial states. These
in turn are considered “assumptions” by the formal tool. Once such initial state is
defined, the formal tool does not have to try “all” possible combinations of the inputs.
This reduces the number of vectors it needs to generate. That in turn reduces the time
to formally analyze the formal model and thereby the memory requirements.

Hybrid has become a very popular technology in recent years, and all major EDA
vendors support it. With this technology, you can formally verify much larger blocks
of logic (compared to static formal only).

10.5  �Logic Equivalence Check (LEC)

LEC uses formal methods to prove that two versions of a design are, or are not,
functionally equivalent. Some forms of formal verification are already widespread
in design. Equivalence checking has been used for over a decade to check that RTL
and gate-level descriptions of a design represent the same design. Equivalence
checking was introduced in response to the problem of larger designs exceeding the
effective capacity of gate-level simulation tools and quickly took over from hard-
ware–acceleration solutions as well as software-only gate-level simulators. For
users, the equivalence checking technology is relatively easy to use in the way it has
been packaged by vendors, in tools such as Formality from Synopsys.

Equivalence checking has moved beyond SoC RTL design, migrating into FPGA
design because of the use of very large devices and the time it takes to compare
simulation with hardware given the limited internal visibility that a programmed
FPGA offers. Through tools such as SLEC from Calypto Design Systems, equivalence

Simula�on + Sta�c Formal Hybrid verifica�on

Simula�on Sta�c Formal

State Space

Initial State

Bugs

0

0
RegisterRegisterRTL LOGIC

1

1

0

0

1

1

0

0

1

1

0

1

1

Fig. 10.6  Static formal + simulation hybrid verification methodology

10.5  Logic Equivalence Check (LEC)

204

checking is also used to check the functional equivalence of ESL and RTL descriptions
of a block.

At a high level, LEC can be characterized by the following points:

•	 Checking whether two models of a design are functionally equivalent.
•	 Involves a golden and a revised target model.
•	 Objective is to find bugs in target model wrt to golden model.
•	 Crucial step in transformation-based design flow.
•	 Types of LEC checks:

	1.	 RTL (golden) to RTL (ECO—bug fixed)
	2.	 RTL to gate
	3.	 Gate (pre-scan-DFT) to gate (post-scan-DFT)
	4.	 Specification (C model or SystemC TLM ESL model) to RTL
	5.	 Layout vs. schematic (LVS)
	6.	 Low-power design equivalence (e.g., check that addition of retention cells or

isolation cells, for low power will not affect the equivalence between the non-
low-power netlist and low-power netlist)

•	 Mainstream in today’s design flows.
•	 Current LEC tools can handle very complex designs.
•	 LEC is orders of magnitude faster than simulation.
•	 Support for multiple design languages such as SystemVerilog, VHDL, etc.

10.5.1  �LEC Technology

LEC is a static technology, in that, the equivalence check between two representa-
tions of a design is not simulated. They are checked using formal (static formal)
technology. LEC ignores timing and does only Boolean equivalence. Just as in static
formal, LEC employs formal, mathematical techniques. There are four basic stages
that LEC goes through to prove the equivalency between two forms of design.

	1.	 Read
	2.	 Match
	3.	 Verify
	4.	 Debug

10.5.1.1  �Read

Logic Cones

During the Read stage, both versions of the design are read into the LEC tool. It then
segments design into manageable sections called logic cones. As shown in Fig. 10.7,
logic cones are groups of logic bordered by registers, ports, or black boxes (BB).
The output border of a logic cone is referred to as the compare point.

10  Static Verification (Formal-Based Technologies)

205

Black Boxes

A note on declaring black boxes as input to LEC tool is that during synthesis, there
are several analog IP, memory blocks, pads, etc. which are not meant to be synthe-
sized. Their model (library/lef) needs to be picked during the synthesis. It is essen-
tial to use the exhaustive list of black box modules in LEC setup as these are the
modules which don’t require internal verification, but their interface must be
exhaustively verified to confirm their interaction with the rest of the design.

If any module is missed from this list of all the black boxes in the design and if
there is any connection between these modules with other part of the SoC, then LEC
tool will not check for such connections, which sometimes misses the genuine non-
equivalence like broken connections between these modules.

10.5.1.2  �Match and Verify

Compare Points

Compare points are those where LEC will perform comparison between RTL and
gate netlist (for that matter any two forms of netlists, for example, gate to gate or
RTL to RTL). The compare points are:

	1.	 Primary outputs
	2.	 Internal registers
	3.	 Inputs to black boxes
	4.	 Nets driven by multiple drivers

Compare points and logic cones go hand in hand. As mentioned before, the small
segments called logic cones of a design must be surrounded by compare points.
LEC will check equivalency at these compare points. After breaking a design into
logic cones, LEC attempts to match (or map) between two different netlists. This is
called the matching process. Both name-based (i.e., nonfunction) and function-
based matching methods are deployed by a LEC tool. Name based means that syn-
thesis will (during optimization) change the hierarchy or names of IO of registers or

Fig. 10.7  Logic cone

10.5  Logic Equivalence Check (LEC)

206

net names. LEC tool should be able to check, at compare points, the functional
equivalence of RTL with gates even with such net name changes.

After “match” comes verification of logic cones. This is mainly a theoretical/
algorithmic subject beyond the scope of this book. But LEC tools may use algo-
rithms such as BDD, isomorphism, ATPG, etc. to verify the logic equivalence
between two logic cones.

10.5.1.3  �Debug

During debug phase, LEC will generate logic cones of the logic that fails equiva-
lence check as shown in Fig. 10.8 (Synopsys).

This figure shows a very small representative logic cone. In reality, logic cones
are very big (e.g., datapath logic). For this, LEC generates functional vectors to
pinpoint the bug caught during LEC.

Let us now dive into each type of LEC technology and check what is available
today for SoC design verification.

10.5.2  �RTL to RTL Verification

There are many reasons you need to do RTL to RTL equivalence check. For
example:

	1.	 Low-power optimizations (gated clocks, power domains, etc.)
	2.	 RTL “data change” (e.g., addition of new pipe stages)
	3.	 Critical path optimization
	4.	 “C” to RTL synthesized RTL

Under all these cases, LEC will check that once out of Reset, the two RTL ver-
sions are functionally equivalent.

Reference
Design

DFF DFF DFF DFF0
0

Implementation
Design

Abc_reg Abc_reg

0 1

Reference
Design

DDFF DFFDFFFF DFFFFFF DFFDFFFF0
0

Implementation
Design

Abc_reg Abc_re

0 1

Fig. 10.8  Logic cone: pass-and-fail scenario

10  Static Verification (Formal-Based Technologies)

207

10.5.3  �RTL to Gate Verification

RTL to gate essentially entails equivalence check between golden RTL and the post-
synthesis netlist. As mentioned before, the check is static and does not guarantee
functional accuracy of either model. RTL must be golden, thoroughly verified. LEC
simply makes sure that the RTL and the post-synthesis netlist are functionally
equivalent.

RTL to gate equivalence checks for the following, at a minimum:

	1.	 Low-power structural changes
Low power requires the addition of retention cells, isolation cells, level shift-

ers, etc. to power up and power down different SoC power domains. Such ele-
ments may not exist in RTL. LEC tool must make sure that RTL without
low-power logic and netlist with low-power logic are functionally equivalent.

	2.	 Synthesis optimization
During synthesis, you may have turned on optimization knobs such as reti-

ming, register merging, register inversion, etc. This will make it difficult for the
LEC tool to do equivalence check with the post-synthesis netlist. RTL won’t be
optimized, but gates will be. The LEC tool should support such optimized post-
synthesis netlists.

	3.	 ECO changes
	4.	 Complex datapaths
	5.	 Phase inversion

10.5.4  �Gate to Gate Verification

Gate to gate equivalence checks are needed because of the following transforma-
tions applied to a gate-level netlist:

•	 Buffer insertion for retiming
•	 P&R buffers (hold time violation) insertions
•	 Test logic insertion
•	 Clock trees insertion
•	 Scan chains insertion

10.5.5  �ESL (C/ C++/ SystemC model) to RTL (Sequential
Equivalence Checking—SEC)

C, C++, and SystemC (Electronic System Level, ESL, model) to RTL synthesis is
done through tools that fall under High-Level Synthesis (HLS) domain. Sequential
equivalence checking is a key enabler for the move to system-level design by

10.5  Logic Equivalence Check (LEC)

208

allowing RTL models to be checked for equivalence with golden system-level
models. It also enables sequential RTL changes for exploring alternate microarchi-
tectures and is required for the successful deployment of behavioral synthesis tools
for generating RTL from system-level models.

Sequential equivalence checking (SEC) is a formal technique that checks two
designs for equivalence even when there is no one-to-one correspondence between
the two designs’ state elements (Anmol Mathur). In contrast, traditional combina-
tional equivalence checkers need a one-to-one correspondence between the flip-
flops and latches in the two designs. ESL models can be untimed C/C++ functions
and have very little internal state. RTL models, on the other hand, implement the full
microarchitecture with the computation scheduled over multiple cycles. Accordingly,
significant state differences exist between the ESL and RTL models, and ESL to
RTL equivalence checking clearly needs SEC. Researchers have investigated SEC
techniques and commercial SEC tools that are now available, such as the one from
Calypto Design Systems.

SEC is a key technology needed to keep ESL and RTL models consistent and to
quickly weed out any RTL or ESL bugs without the need to write testbenches at the
block level. As design teams deploy HLS-based flows, SEC fills several critical veri-
fication needs. SEC has been deployed in both HLS-based flows and flows in which
RTL is manually created. SEC technology must continue to evolve to ensure that it
can handle larger block sizes and that it can check designs with larger latency and
throughput differences for equivalence.

The use of equivalence checking to verify RTL functional correctness has two
key advantages. The first advantage is the complete verification of the RTL model
with respect to the ESL. Unlike simulation-based or assertion-based approaches, in
which functional coverage of the RTL model is an issue, SEC checks that all the
RTL behaviors are consistent with those in the ESL. This results in a very high cov-
erage of the RTL behaviors. It should be noted that ESL to RTL equivalence check-
ing verifies only the RTL behaviors that are also present in the ESL. Thus, if the
ESL has a memory implemented as a simple array while the RTL model imple-
mented a hierarchical memory with a cache, equivalence checking will not verify
whether the cache is working as intended as long as the overall memory system
works as expected.

The second advantage of equivalence checking is simplified debugging. In case
of a functional difference between the ESL and RTL, SEC produces the shortest
possible counterexample that shows the difference. This contrasts with traditional
simulation-based approaches, which may find the difference but only after millions
of cycles of simulation. The conciseness of the counterexample makes the process
of debugging and localizing the error much more efficient.

Here’s a methodology perspective for SEC to work (Anmol Mathur):

Consistent Design Partitioning
SEC is a block-level verification tool due to capacity limitations of formal technol-
ogy. To effectively use SEC, it is crucial that the ESL and RTL model be consis-
tently partitioned into subfunctions and submodules. Clean and consistent design

10  Static Verification (Formal-Based Technologies)

209

partitioning provides an opportunity to use sequential equivalence checking at the
level of individual ESL/RTL blocks.

Creation of ESLs with Hardware Intent
To perform ESL to RTL equivalence checking using a sequential equivalence
checker, the ESL must be written to let the tool infer a hardware-like model stati-
cally from the source. This requires that the team creates the ESL to follow certain
coding guidelines that allow the ESL’s static analysis. The use of statically sized
data structures instead of dynamically allocated memory, explicit use of memories
to reuse the same storage for multiple arrays instead of pointer aliasing, and stati-
cally bounding loops are some examples of constructs that make ESLs more ame-
nable to SEC and HLS tools.

Orthogonalization of Communication and Computation
Clear separation between the computational and communication aspects of the ESL
allows easier refinement of the communication protocol, if needed, to make the
interface timing more closely aligned with that of an RTL model.

Key challenges in ESL to RTL (SEC) usage. (Anmol Mathur)
The main challenges in the usage of SEC-based flows stem from the fact that

SEC has capacity limitations. SEC’s complexity is a function of the following
factors:

•	 Size of the ESL/RTL blocks being compared.
•	 Latency and throughput difference between the ESL and RTL. The greater the

sequential differences between the ESL and RTL, the larger the sequential depth
to which SEC needs to explore the ESL–RTL state machines, and, hence, the
larger the run time and memory usage is in SEC.

•	 Difference in levels of arithmetic abstraction. If both the ESL and RTL represent
their computations at the operator level, the complexity of using SEC is lower
than the cases where, in the RTL model, the arithmetic operators have been
decomposed into bit-level constructs.

•	 Amount of correspondence between internal states of ESL and RTL model. If the
SEC tool can detect internal states and signals in the ESL and RTL model that are
identical, then the verification problem can be decomposed and simplified.

Figures 10.9 and 10.10 ESL to RTL Equivalence Flow show a very simple C
model and an RTL model. RTL model could be derived using High-Level Synthesis
(or manually created). But we need to make sure that these two models are
equivalent. Just as with other equivalence checks, the timing and internal structure
between system-level model and RTL can differ significantly, but the outputs at
compare points must be the same. Such a C/C++/SystemC to RTL equivalence
checker will check for:

	1.	 Combinational equivalence
	2.	 Cycle-accurate equivalence
	3.	 Pipelined equivalence
	4.	 Stream-based equivalence
	5.	 Transaction equivalence

10.5  Logic Equivalence Check (LEC)

210

The first step in any system-level equivalence checking system is the construc-
tion of a formal model from the C++/SystemC description as well as from the
RTL. Preserving word-level information in this step enables the use of powerful
word-level solvers in the equivalence checker. For the RTL, constructing a formal
model is usually straightforward as most existing RTL front ends already produce a
synthesized netlist which preserves word-level information. For the C++/SystemC
description, however, the restriction to a synthesizable subset of the language as
required by many C++ synthesis tools is far too rigid for a verification tool. New
HLS algorithms are being developed to get around the ESL subset limitations.

Fig. 10.9  ESL to RTL equivalence example

C/C++/SystemC
Specification

Formal word-level
model

Notion of equivalence

Combined formal
model

Equivalence
checking core

RTL
Implementation

Formal word-level
model

Fig. 10.10  ESL to RTL equivalence flow

10  Static Verification (Formal-Based Technologies)

211

Figure 10.11 shows a high-level design flow for sequential equivalence checking
(Anmol Mathur).

The prominent tool in this category is SLEC from Calypto (now Mentor
Graphics). SLEC stands for Sequential Logic Equivalence Checker. SLEC com-
pares a synthesizable subset of C, C++, and SystemC with a synthesizable subset of
Verilog, SystemVerilog, and VHDL RTL. SLEC lets you compare C/C++/SystemC
to C/C++/SystemC, C/C++/SystemC to RTL, or RTL to RTL.

A tool called HECTOR (Synopsys) is another widely used tool for system level
(C/C++/SystemC) to RTL equivalence checking. HECTOR is designed to help find
bugs and reduce RTL bring-up time, verify algorithmic consistency through design
changes without running simulation, and increase functional sign-off certainty by
verifying transaction equivalence between high-level models and RTL implementa-
tions. Its patented compilers improve capacity by generating word-level RTL and
formal C/SystemC models. The powerful formal algorithms it provides find proofs
in minutes or hours, not days, and its unique multiple leaf-level solvers solve com-
plex logic.

HECTOR uses hierarchical equivalence, automatic design partitioning, efficient
and patented memory models, and multiprocessor support to rapidly converge on
proofs. HECTOR also supports multiple languages: Verilog, VHDL, SV, C, C++,
and SystemC. HECTOR is well suited to algorithm-intensive blocks including
video processing, wireless media, cameras, encryption/decryption logic, transfor-
mations, GPUs, and floating point. HECTOR can be targeted at datapath-dominated
designs and arithmetic blocks including floating point and, uniquely, bit-serial divi-
sion. HECTOR is also unique in the formal space in that it can do consistency
checks on complete blocks including control logic.

Figure 10.12 shows the HECTOR product overview (Synopsys website).

Fig. 10.11  Sequential equivalence checking (Anmol Mathur)

10.5  Logic Equivalence Check (LEC)

212

10.5.6  �Layout vs. Schematic (LVS) Physical Verification

LVS determines whether an IC layout corresponds to the original schematic. An
LVS tool enables accurate circuit verification because it can measure actual device
geometries across a full chip for a complete accounting of physical parameters. The
measured device parameters supply the information for back annotation to the
source schematic and comprehensive data for running simulations.

In the nanometer era, die areas are getting larger as the designs are getting more
and more complex. To ensure the correctness of the implemented design, bigger
layout databases need to be checked during the physical verification stage in the
same ambitious project time frames as before. Any failure identified after the design
is manufactured will result in expensive mask changes and delays in getting the
System on Chip (SoC) to market. Physical verification is performed to check
whether the design layout is equivalent to its schematic and checks the layout
against process manufacturing guidelines provided by the semiconductor fabrica-
tion labs to ensure it can be manufactured correctly.

Physical verification includes:

•	 Design rule check (DRC): It verifies whether the designed layout can be manu-
factured by the fabrication lab with a good yield.

•	 Layout versus schematic (LVS): It is a method of verifying that the layout of the
design is functionally equivalent to the schematic of the design.

It is important to note that DRC does not ensure the intended functionality of
layout. DRC is only limited to checking whether the given layout conforms to
design rules provided by the silicon foundry to ensure the faultless fabrication but
without warranting whether the circuit will behave in a way that it was intended to.
The idea of LVS originated from this very requirement. DRC is out of the scope of
this book. We will focus on LVS instead in this section.

An EDA tool performs LVS by taking a set of instructional code input, com-
monly known as LVS rule deck, in the following two steps: extraction and compari-
son. The LVS rule deck guides the verification tool by providing the instructions and

C to C

C/C++/SystemC
reference

model

C/C++/SystemC
Implementation

model
C/C++/SystemC

model
Transformed

RTL
RTL model RTL model

HECTOR HECTOR HECTOR

C to RTL RTL to RTL

Fig. 10.12  Synopsys HECTOR: ESL to RTL equivalence product

10  Static Verification (Formal-Based Technologies)

213

identifying files which are needed for LVS. Design inputs needed for running LVS
are as follows:

•	 Graphical database system (GDS) layout database of the design
•	 Schematic netlist of the design
•	 Cell definition file including intellectual property files and standard cells
•	 Pad reference file

An LVS rule deck is a set of code, which is written in Standard Verification Rule
Format (SVRF) or TCL Verification Format (TVF), which guides the verification
tool to extract the devices and connectivity of the integrated circuit (Rishabh
Agarwal). The LVS rule deck contains the layer definitions for the identification of
layers used in the layout file and matches description of a layer to the location of the
layer in the GDS file. This helps in the recognition of the electrically connected
regions in the layout, namely, the nets. Nets are recognized from the layout shapes
through analysis between layout shapes in layers. LVS rule deck also contains
device structure definitions.

Referring to Fig. 10.13, the verification tool takes the GDS file as input and
breaks it down into basic design devices like transistors, diodes, capacitors, resis-
tors, etc. These devices are identified in the GDS file by recognition of the layers
and shapes that make up the circuit or by the cell definition of the devices/circuits
provided in the cell definition file of the intellectual property blocks or in the LVS

Device
Recognition &

connectivity

GDS
RESET

RESET
D

S
G

Layout Netlist
(Extracted

Netlist)
COMPARE Source Netlist

Schematic
Compilation

Schematic

LVS Results

Fig. 10.13  LVS design methodology flow

10.5  Logic Equivalence Check (LEC)

214

rule deck itself. It also extracts the connectivity information between these devices
from the GDS file. The next step in connectivity extraction is uniquification of nets.
Each electrical net is given a unique node number for identification during the
extraction process. Net names can also be named based upon the presence of layout
text objects or text statements in the control file. This device information along with
their connectivity is written into a layout netlist file, generally called layout extracted
netlist. This process is known as extraction.

In the comparison phase, the verification tool compares the electrical circuits
from the schematic netlist and the layout extracted netlist. The netlist comparison
process also uses the LVS rule deck. After the successful comparison between lay-
out and source netlist, a one-to-one correspondence between the elements (instances,
nets, ports, instance pins) of source netlist and layout netlist is established. The
intention of the layout designer is to implement the functionality provided in the
schematic into a geometrical representation of layout. Therefore, for the verification
process to complete without error, both layout and source netlist must match. If the
two netlists differ, discrepancies are reported in the form of an LVS result database
which can be used to debug LVS issues. Result database would contain the list of
incorrect elements and the reason of mismatch like incorrect nets, incorrect ports,
and incorrect instances.

Here are some rules to follow when going through LVS flow:

	1.	 Always verify the operation of a circuit via simulations at the schematic level
before attempting to layout the cell. LVS only verifies the schematic and layout
match, so if the schematic does not work, the layout will not either. If the sche-
matic does not function properly, there is no reason to spend time debugging the
LVS.

	2.	 Always design in a hierarchical fashion, building smaller (lower level) cells
before constructing larger circuit blocks from the lower-level cells. Performance
improvements in LVS tools are achieved through hierarchical processing, that is,
processing a repeated block only once, and hardware scaling, or the ability to
divide the LVS job across many CPUs.

	3.	 Always pass LVS on lower-level cells before attempting to check LVS on a
higher-level cell. If the lower-level cells do not pass LVS, it is much easier to
debug them on their own than after you have added the cell to a higher-level
circuit.

	4.	 Always recheck LVS on a cell if you make any changes to the schematic or
layout.

	5.	 If you modify a layout to correct a problem found in an LVS check, always re-
extract the layout, and save it before running the LVS checker again.

Here are a few LVS tools from the EDA industry:

Mentor Graphics  Calibre nmDRC and Calibre nmLVS

Cadence Design Systems  Physical verification system (PVS). PVS integrates with
Cadence Virtuoso® custom/analog, Cadence Innovus™ digital design, and mixed-
signal flows. This provides for an end-to-end design and sign-off physical verifica-
tion solution integrated with all Cadence tools.

10  Static Verification (Formal-Based Technologies)

215

Synopsys  IC Validator (physical verification with IC Validator in the Synopsys
Galaxy™ Design Platform) provides technology-leading, production-proven sign-
off solutions for design rule checking (DRC), connectivity verification layout vs.
schematic (LVS), metal fill insertion, and design for manufacturability (DFM)
enhancements.

10.5.7  �RTL Lint

This technology has been in use for over 20 years and is well understood. RTL Lint
checks that the design code adheres to guidelines. It checks HDL code for synthe-
sizability, simulatability, testability, reusability, and RTL/gate sign-off. Besides
helping to enforce some known-good naming schemes, the checks are designed to
explore design and coding deficiencies that impact simulation, synthesis, test, and
performance.

RTL Lint checks for:

•	 Unsynthesizable constructs
•	 Unintentional latches
•	 Unused declarations
•	 Multiply driven and undriven signals
•	 Race conditions
•	 Incorrect usage of blocking and non-blocking assignments
•	 Incomplete assignments in subroutines
•	 Case statement style issues
•	 Set and Reset conflicts
•	 Out-of-range indexing

RTL Lint checks can run very quickly, because they do a shallow analysis of the
HDL code itself rather than trying to understand the design represented by that
code. Other static verification techniques look beyond the HDL representation to
analyze the design and verify its characteristics.

Lint can be a highly effective tool when used in pre-simulation. It can catch bugs
without requiring specific test vectors and so reduce the number of simulation
cycles needed to achieve coverage of a logic block. A further strength of lint tools is
that the rule decks they have assembled contain decades of experience and knowl-
edge. The sheer number of error checks, however, can make parsing the error reports
time-consuming and difficult.

It is ultimately the responsibility of the user to review the report generated by the
lint tool and then decide which of the potential bugs can be waived and which need
to be fixed. Because lint tools contain so many accumulated rules, designers con-
tinue to complain that they generate too many false positives. In this scenario, an
obvious concern is that much of the simulation time saved may still be eaten up
during analysis of the lint tool’s output.

There are then two further issues that designers raise.

10.5  Logic Equivalence Check (LEC)

216

First, as lint is based on accumulated knowledge, it is sometimes the case that a
significant number of the checks are duplicates while others have become obsolete
or unnecessary.

Second, designers say that while lint tools are excellent for checking compliance
with coding best practices, they can lack the finesse to accommodate the subtle dif-
ferences present in all in-house coding styles (sometimes also the differences
between coding styles in different divisions of the same company). This
comparatively long-standing complaint has gained greater force of late, as SoC
designs have been increasingly dependent on IP supplied by third parties—which,
again, use differing coding styles.

As a result, designers say that they often have had to spend too much time pre-
configuring lint tools to exclude or overcome these last two issues. However, com-
panies within the EDA industry are responding to these criticisms.

At the most basic level, tool vendors have placed lint rules under close review to
deliver the most compact decks that they can. They have also taken advantage of
increasing computational power to reach a point where lint tools can analyze designs
of, say, 300 million or more gates in a matter of minutes.

User interfaces have then been simplified so that it is much easier for designers
to tweak a lint tool per actual requirements.

Companies such as Real Intent and Synopsys have decided to make the reports
easier to use with hierarchical reporting and integration.

Real Intent’s Ascent Lint addresses designers’ fear of being overwhelmed by the
number of lint flags raised by prioritizing potential bugs in its reports “so that fixes
will produce the greatest improvement in the quality of the HDL.” It also has debug
hooks into the Synopsys Verdi platform that cross-probe the RTL to more closely
identify where the lint flags are located. These themes form part of a “smart report-
ing” concept that Real Intent is introducing across all its products.

Synopsys incorporates lint within its SpyGlass platform, providing a methodol-
ogy together with the lint rule sets. This, the company says, “provides an infrastruc-
ture for rule selection and methodology customization aligned with design
milestones.” Synopsys’ approach is based on the idea that different rule sets apply
during different phases of design. For example, it makes sense to run a check on
synthesizable constructs before converting RTL to gates, but different rules would
be prioritized to perform state-machine checks, for example, before simulation.

The result of these changes is that lint has become not just an aid to streamline
verification and block-level RTL creation but part of the drive toward what is vari-
ously called “RTL sign-off” or “SoC sign-off.”

10.6  �Structural Checks

Structural checking tools perform a pseudo-synthesis of the design that identifies
combinational and sequential elements and recognizes finite-state-machine struc-
tures. Such tools reduce the design to a generic netlist consisting of registers,

10  Static Verification (Formal-Based Technologies)

217

latches, logic, and RAM, and most structural checks are performed on this netlist
representation. Hence, structural checks can recognize many deficient or incorrect
coding styles for synthesis and, at the same time, identify any potential simulation
versus synthesis mismatch issues. As these checks are applied to a generic structural
netlist representation of the design and not just to the syntax of the design descrip-
tion, they can more easily explore connectivity issues, fan-in and fan-out (driver-
reader) relationships within a design, and FSM state/transition issues. However, it is
important to realize that if part of the design is not synthesizable, that part will be
treated as a black box and some structural checks will not be performed.

Some of the common structural checks include:

•	 Combinational loops
•	 Full and parallel case issues
•	 Clock gating and usage issues
•	 Bus conflicts and floating bus
•	 Dead code and unreachable blocks or states
•	 Unused input and undriven output ports
•	 Unresettable registers
•	 Arithmetic overflow

10.7  �Low Power Structural Checks

A common problem that exists with power-aware verification of designs with active
power management involves the accurate placing of level shifters and isolation
cells. Often these are done manually or through scripts and are inserted before or
after synthesis. These techniques are error prone and cause unique verification prob-
lems that are difficult to rectify and typically require costly respins. The Unified
Power Format (UPF) low-power specification standard [(“IEEE Standard for
Design and Verification of Low Power Integrated Circuits)] allows designers to
explicitly specify the insertion of isolation cells and level shifters at the RTL, both
for verification and for synthesis [(Freddy Bembaron)].

Given a UPF description of the power intent, structural checks can be used effec-
tively to verify that isolation and level shifting cells have been inserted where
needed or will be when the design is synthesized along with its UPF specification.
The UPF file typically contains a specification of the power domains that will exist
in the design, the boundaries of which may require isolation or level shifting cells.
The UPF file also typically defines the power states of the system, each of which is
defined in terms of the power states of each power domain in the system. For any
two adjoining power domains, their respective states in any given system power
state determine whether isolation or level shifting will be required in that system
power state.

For example, if an output of power domain A is an input to power domain B and
A is powered down in some system state in which B is powered up, then isolation is

10.7 � Low Power Structural Checks

218

required on that input to B. Structural checks can easily identify missing, unnecessary,
or redundant isolation cells based on the power state table, power domain defini-
tions, and design connectivity. Similarly, structural checks can identify missing or
unnecessary level shifters at such interfaces, as well as verify that the direction of
level shifting is correct, based on respective voltage levels defined in the power state
table.

Structural checks provide more accurate results than RTL lint checks. This is
because rather than just looking at the RTL code itself, such checks consider the
structure of the design that will result from synthesis of the RTL code. However,
structural checks alone are not sufficient; it is also important to consider the behav-
ior of the design represented by the RTL.

Here’s a brief description of Cadences Conformal Low Power XL© (Cadence)
Equivalence Check methodology/product Fig. 10.14.

Low-power verification (equivalence) is amplified by the fact that most of the
low-power function is introduced into the gate netlist during synthesis and physical

Simulation

RTL and PL
Signoff For
Simulation

Power Intent
Import/Author

& Quality Checks

Library Consistency
Checks LIB, LEF, PI

Power
Intent

Synthesis and Test

Place & Route

RTL and PI
Signoff for
Synthesis

Low Power
Equivalence

Checking

Low Power
Equivalence

Checking

P&R Netlist

Netlist

LibraryRTL

Netlist and PI
Signoff
for P&R

P&R Netlist plus
PI Verification

Fig. 10.14  Cadence Conformal Low Power XL© (Cadence) Equivalency Check
methodology

10  Static Verification (Formal-Based Technologies)

219

implementation. Most simulation-based verification takes place at the RTL. Full-
chip, gate-level simulation is neither a practical nor scalable methodology for veri-
fying the logic function of today’s designs due to their size and complexity.

During development, a low-power design undergoes numerous iterations prior to
final layout, and each step in this process has the potential to introduce logical bugs.
Conformal Low Power checks the functional equivalence of different versions of a
low-power design at these various stages and enables you to identify and correct
errors as soon as they are introduced. For example, it validates post-synthesis netlist
and instantiated power intent back against the verified golden RTL and its associ-
ated power intent. It supports advanced dynamic and static power synthesis optimi-
zations such as clock gating and signal gating, multi-Vt libraries, and de-cloning
and re-cloning of gated clocks during clock tree synthesis and optimization.

Conformal Low Power supports the Common Power Format (CPF) specification
language (UPF was not supported as of the writing of this book). It uses CPF for
guidance to independently model how implementation inserts and connects low-
power cells—level shifters, isolation, and state retention registers—into an RTL
design, thus enabling true low-power equivalence checking from RTL to the gate
level. Conformal Low Power can also model level shifters and isolation cells as
domain anchor points during equivalence checking to detect whether logic gates
have erroneously crossed domain boundaries from one version of the netlist to
another. Conformal Low Power supports other power intent standards as well.

Conformal Low Power XL © (Cadence) reports the following:

•	 Power- and ground-domain-assignment-related problems and floating
connections

•	 Level shifters: missing, redundant, wrong domain location, or wrong
connectivity

•	 Isolation cells: missing, redundant, wrong gate type, wrong location, and wrong
isolation enable polarity

•	 Control signals that are not powered appropriately
•	 Incorrect power and ground connectivity, including shorts and opens
•	 Instances with undefined power domains or mixed power domains
•	 Missing, redundant, and incorrect power connection and wrong level shifter

types
•	 Missing, redundant, and incorrect isolation cell power connectivity
•	 Power control signals to power switches, isolation cells, and state retention reg-

isters that are not powered
•	 Incorrect power connection to state retention registers

10.8  �X-State Verification

Some other uses of formal checks are related to initialization, x-generation, and
x-propagation [(Turpin)]. The goal of such checks is to eliminate pessimistic
x-propagation as seen in simulation and to make sure an unknown or x-state is not

10.8 � X-State Verification

220

generated or consumed unintentionally in the design. When an unknown state or an
uninitialized state is sampled, the resultant value is unpredictable. Hence, it is also
important to ensure that registers are initialized before they are used. Connecting a
global reset to all the registers is ideal. However, due to routing congestion, this may
not be always possible. Instead, partial reset may be used, in which case we need to
verify that the whole block eventually reaches a predictable reset state and that
unpredictable register values do not propagate before they are overwritten with pre-
dictable values.

The common formal checks related to X-state verification are:

•	 Reachable x-assignment
•	 Conflicting drivers
•	 Unguarded x-propagation
•	 Uninitialized registers
•	 Use of uninitialized values

Formal checks are the most precise form of generic or automatic static checking
available, because they consider the functionality of the design in addition to its
structure. Thus, formal checks produce few false failures, whereas RTL lint checks
and even structural checks may produce many false failures. However, generic for-
mal checks are limited to detecting relatively simple, common errors that can occur
in most any design.

10.9  �Connectivity Verification

Connectivity checking involves the validation of the internal wiring of a device
(Erich Marschner). It verifies the connections among blocks of logic in a design are
correct. Checking the connectivity with dynamic simulation using a directed or con-
strained random approach will certainly find some of the connectivity bugs.
However, designs can contain tens of thousands of wires controlled by configura-
tions, all of which potentially need to be checked for correctness. Even small SoCs
can have tens of thousands of static and dynamic interconnections due to BIST,
low-power isolation circuitry, and multiplexing of I/O’s layered on top of the base-
line point-to-point IP interconnections. Even worse, add in the constant stream of
bug fixes and ECOs throughout a project’s lifecycle and connectivity verification
has become a high-risk, high-cost testbench creation and debug project requiring
weeks of man–hours and simulations all on its own.

Formal methods offer a solution that is quick and exhaustive and allow for effi-
cient debug. With the connectivity specification captured in a table or spreadsheet,
assertions can be generated automatically. Formal methods process all the asser-
tions at the same time. Any assertion failure will pinpoint an issue with a particular
connection.

10  Static Verification (Formal-Based Technologies)

221© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_11

Chapter 11
ESL (Electronic System Level) Verification
Methodology

Chapter Introduction
Electronic System Level refers to simulating a design at abstractions higher than
RTL (register transfer level). Higher level means at transaction level where the low-
level implementation detail is not of consequence, only the raw functionality and
hardware-based concurrency.

This chapter will discuss OSCI TLM2.0 standard definition, virtual platform
examples, and how to use a virtual platform for design verification, among other
topics.

11.1  �ESL (Electronic System Level)

Electronic System Level is now an established approach at most of the world’s lead-
ing system-on-a-chip (SoC) design companies and is being used increasingly in
system design. From its genesis as an algorithm modeling methodology with “no
links to implementation,” ESL is evolving into a set of complementary methodolo-
gies that enable embedded system design, verification, and debugging through to
the hardware and software implementation of custom SoC, system-on-FPGA,
system-on-board, and entire multi-board systems.

ESL concepts and terminology have been around since 2001. But it’s only
recently (onward) that the methodology has taken a standard shape and has become
widely adopted. There has been a significant maturing and development in many
areas of ESL flow.

The most significant development that changed the ESL landscape is the emer-
gence of OSCI TLM 2.0 specification, which creates a standardized way to connect
models described at the loosely timed or approximately timed (or untimed for that
matter) transaction level. The ramifications of its introduction have been huge.
Instead of every vendor of system-level virtual platforms having their own proprie-
tary languages, models, methodology, and tools, every major user developer is now

222

beginning to standardize on the use of TLM 2.0 as the way in which to interconnect
models. Models developed for one system will be able to work on another, meaning
that the problem of model availability and true interoperability are now being solved.

Transaction-level modeling (TLM) is a high-level approach to modeling digital
systems where details of communication among modules are separated from the
details of the implementation of functional units or of the communication architec-
ture. Communication mechanisms such as buses or FIFOs are modeled as channels
and are presented to modules using SystemC interface classes. Transaction requests
take place by calling interface functions of these channel models, which encapsulate
low-level details of the information exchange. At the transaction level, the emphasis
is more on the functionality of the data transfers—what data are transferred to and
from what locations—and less on their actual implementation, that is, on the actual
protocol used for data transfer. This approach makes it easier for the system-level
designer to experiment, for example, with different bus architectures (all supporting
a common abstract interface) without having to recode models that interact with any
of the buses, provided these models interact with the bus through the common
interface.

So, ESL design means modeling at transaction level in SystemC-TLM 2.0, C/
C++, MATLAB, etc. The transaction-level models (TLM) allow designers to:

•	 Develop software and explore hardware platform architecture alternatives before
committing to RTL, for example, firmware, OS, drivers, and applications code.

•	 Break down SoC complexity into manageable TLM level modular
functionality.

•	 Start DV test development before SoC RTL is ready. ESL platform allows you to
verify your tests and remove wrinkles within, so that the tests are ready for
deployment when RTL is ready.

•	 Simulate orders of magnitude faster than RTL (e.g., boot small Linux kernel on
a very basic SoC in under 10 wall clock seconds). More on this coming up in
later sections.

•	 Improve power and performance estimation at system level before committing to
RTL.

The author highly recommends the book written by Brian Bailey to understand
in detail the ESL models, how they are developed, and how they are used and appli-
cations of TLM models. This book will focus on the advantages of ESL toward
functional verification.

11.1.1  �How Does ESL Help with Verification?

Let us now see where does ESL fit in the design verification paradigm. Virtual plat-
forms created with TLM 2.0 models are extremely fast, and they help with software
development in parallel to hardware development. But there is also the great benefit
of being able to create tests for the SoC before the RTL is ready.

11  ESL (Electronic System Level) Verification Methodology

223

A virtual platform functionally models the entire architectural state of the SoC. In
other words, you can create functional tests on the virtual platform which will even-
tually be run on RTL. You can create UVM agent to drive the ESL virtual platform
(i.e., the virtual platform acts as the DUT) with transaction-level tests and compare
the response from the virtual platform with expected response in a scoreboard. The
virtual platform is architecturally 100% compatible to your SoC-DUT, and hence
such a methodology will allow you to create tests in the absence of RTL, a great
advantage of ESL to design verification.

At a high level, here are the advantages of ESL for design verification:

•	 Faster development:

–– ESL transaction-level abstraction reduces testbench development time.

•	 Faster simulation:

–– ESL testbench + ESL design (i.e., Virtual Platform) simulates orders of mag-
nitude faster than RTL.

•	 Faster debug:

–– Debug at ESL/TLM is lot easier than debug at cycle accurate RTL.

•	 Earlier verification:

–– Find functional/architectural bugs before RTL is ready for verification.

•	 Faster time to production because of faster Develop->Simulate->Debug->Cover
Loop

11.1.2  �ESL Virtual Platform Use Cases

Fig. 11.1 shows the multi-useful virtual platform. It allows you to develop APPS,
OS, firmware, drivers, etc. in parallel to hardware development. Note that if you
deploy emulation or acceleration methodology for software development, you still
need to wait for RTL to be very stable; else the emulated model will be buggy, and
software development will suffer.

Virtual platform also allows for power and performance analysis and design
before committing to a final power architecture of the SoC. There are many tech-
niques available to measure power and performance on a virtual platform.

For example, a DVFS (Dynamic Voltage and Frequency Scaling) methodology
measures the power during IO bound transactions vs. CPU transactions vs. memory
transactions. Whenever an application is IO bound, the CPU frequency (and hence
voltage) is lowered for the CPU as well as blocks which are not involved in IO
transfer. Similarly, memory bound and CPU bound transactions dictate different
voltage and frequency strategy. With virtual platform speeds reaching hundreds of
MIPS, allowing you to run applications in real time, you can experiment your power
domain strategy with real-life applications. Power and performance go hand in

11.1  ESL (Electronic System Level)

224

hand. So, you design the power strategy along with performance verification.
Without knowing the effect of power strategy on device performance, the strategy
will be weak at best. If the performance requirements are not too stringent (as in IO
case), you lower the power. Else you increase the power, thus, reducing the average
power consumption.

And as we mentioned above, the virtual platform is a great boon to design veri-
fication. As shown in Fig. 11.1, a virtual platform models the SoC in its entirety at
transaction level. The verification team starts developing tests on this virtual plat-
form SoC way before the SoC-RTL is ready. When SoC-RTL is ready, the tests are
ready as well (and the tests themselves have been verified for correctness). This is
the best methodology for true parallel development of design and testbench devel-
opment. More on this subject is discussed in upcoming sections.

11.2  �OSCI TLM 2.0 Standard for ESL

As mentioned above, OSCI TLM 2.0 standard established modular transaction-level
modeling (TLM) in SystemC. By utilizing the communications mechanism intro-
duced in SystemC TLM 2.0, using ports, interfaces, and channels, users could
implement different transaction-level interfaces. Without such a standard, a model
written for the same functionality (e.g., a memory subsystem) by two different
groups will most likely be non-interoperable. For example, one model may order

Software Development Architecture/Power
Exploration

APP
OS

Firmware

SoC Design Verification

Architect

Design

CPU
Performance

analysis

Bus
Performance

System
Latencies

Power
estimate

Document

Test Implement

ISS Memory IP
Model

IP
Model

IP
Model

IP
Model

Monitors &
CheckersBus Model

Virtual
Platform

Fig. 11.1  Virtual platform: multiple use cases

11  ESL (Electronic System Level) Verification Methodology

225

the function call parameters as {address, data}, while the other may order them as
{data, address}. When you want to use a model for verification, you need to know
exactly how the parameters are ordered. Else your functional calls will fail. In other
words, the testbench is now dependent on the model (whoever created it). Even
though the users are implementing the exact same transaction semantics for the
exact same memory subsystem, their method prototypes would be incompatible,
and thus their models would not be interoperable (Brian Bailey).

TLM2.0 fixes this issue by standardizing the interface method calls. It defines a
set of transport calls, which must be used to be compliant. The goal is to enable
interoperability between high-level component models, which can then be plugged
into any TLM2.0 compliant system model. Currently, engineers create ad hoc adap-
tors and wrappers for model integration. In addition to the standardized interfaces,
TLM2.0 also defines a set of modeling styles, a generic payload as well as over a
hundred rules for the expected behavior of TLM2.0 compliant models.

The TLM-2.0 classes are layered on top of the SystemC class library as shown in
Fig. 11.2. For maximum interoperability and particularly for memory-mapped bus
modeling, it is recommended that the TLM-2.0 core interfaces, sockets, generic
payload, and base protocol be used together in concert. These classes are known
collectively as the interoperability layer. The full scope of TLM2.0 discussion is
beyond the scope of this book. Please refer to OSCI TLM-2.0 Language Reference
Manual (TLM2.0)

To complete the story on TLM2.0, Fig. 11.3 shows the use cases, coding styles,
and mechanisms applied by TLM2.0 in building and using virtual platforms.

TLM 2.0 Classes

Interoperability layer

TLM-2 core interfaces:

Blocking transport interface

Non-blocking transport interface

Direct memory interface

Debug transaction interface

TLM-1:

TLM-1 core interfaces

tim_fifo

Analysis interface

Analysis ports

IEEE 1666TM SystemC

Utilities:

Convenience sockets

Payload event queues

Quantum keeper

Instance-specific extensions

Generic payload & base protocol

Initiator & target sockets

Global quantum

Fig. 11.2  TLM2.0 interoperability layer (OSCI TLM-2.0 LRM)

11.2  OSCI TLM 2.0 Standard for ESL

226

11.2.1  �Loosely Timed (LT) TLM 2.0 Transaction-Level Modeling

The loosely timed coding style makes use of the blocking transport interface. This
interface allows only two timing points to be associated with each transaction, cor-
responding to the call to and return from the blocking transport function. In the case
of the base protocol, the first timing point marks the beginning of the request, and
the second marks the beginning of the response. These two, timing points could
occur at the same simulation time or at different times.

The loosely timed coding style is appropriate for the use case of software devel-
opment using a virtual platform model of an SoC, where the software content may
include one or more operating systems. The loosely timed coding style supports the
modeling of timers and interrupts sufficient to boot an operating system and run
arbitrary code on the target machine.

LT is useful when cycle accuracy is not required, rather functional validation per
SoC architectural specification is required. Some “timing” information may be
available in LT models. But arbitration of shared resources and the impact of
resource conflicts and contention on the system performance is not modeled and
thus not considered.

Referring to Fig. 11.4, the LT model defines two timing points, the beginning
time and the end time of a transaction. As is evident, LT modeling style is simple in
that if it is used to model hardware where concurrent accesses to hardware resources
play a significant part in the “functionality” of the working of an SoC, then the LT
model will not be accurate.

Fig. 11.3  TLM2.0 use cases and coding styles (OSCI TLM2.0 LRM)

11  ESL (Electronic System Level) Verification Methodology

227

The blocking transport method may return immediately (i.e., in the current
SystemC evaluation phase) or may yield control to the scheduler and only return to
the initiator at a later point in simulation time.

The TLM-2.0 blocking transport interface is intended to support the loosely
timed coding style. The blocking transport interface is appropriate where an initia-
tor wishes to complete a transaction with a target during a single function call, the
only timing points of interest being those that mark the start and the end of the
transaction. The blocking transport interface only uses the forward path from
initiator to target. b_transport method has a single transaction argument passed by
non-const reference and a second argument to annotate timing. The b_transport
method has a timing annotation argument. This single argument is used on both the
call to and the return from b_transport to indicate the time of the start and end of the
transaction, respectively, relative to the current simulation time.

Please refer to OSCI TLM2.0 LRM for complete detail on LT modeling style and
its class definitions.

11.2.2  �Approximately Timed (AT) TLM 2.0 Transaction-Level
Modeling

In contrast to blocking transport interface, the approximately timed (AT) interface
uses non-blocking transport. The goal of AT modeling is accurate modeling of
resource contention and arbitration. It is used to model a system which has strong
dependence on timing. The non-blocking transport interface is appropriate where it

INITIATOR TARGET

Simulation time = 100ns

Simulation time = 150ns

Begin request

Begin response

Begin response

Wait 50 ns

b_transport(t, 0ns)

b_transport(t, 0ns)

b_transport(t, 0ns)

b_transport(t, 0ns)

Begin request

Fig. 11.4  LT model with blocking transport call

11.2  OSCI TLM 2.0 Standard for ESL

228

is desired to model the detailed sequence of interactions between initiator and target
during each transaction, in other words, to break down a transaction into multiple
phases, where each phase transition is associated with a timing point (Fig. 11.5).
Each call to and return from the non-blocking transport method may correspond to
a phase transition. By restricting the number of timing points to two, it is possible
to use the non-blocking transport interface with the loosely timed coding style, but
this is not generally recommended. For loosely timed modeling, the blocking trans-
port interface is generally preferred for its simplicity. The non-blocking transport
interface is particularly suited for modeling pipelined transactions, which would be
awkward to model using blocking transport.

The non-blocking transport interface uses a similar argument-passing mecha-
nism to the blocking transport interface in that the non-blocking transport methods
pass a non-const reference to the transaction object and a timing annotation, but
that’s where the similarity ends. The non-blocking transport method also passes a
phase to indicate the state of the transaction and returns an enumeration value to
indicate whether the return from the function also represents a phase transition.
Both blocking and non-blocking transport support timing annotation, but only non-
blocking transport supports multiple phases within the lifetime of a transaction. The
blocking and non-blocking transport interface and the generic payload were
designed to be used together for the fast, abstract modeling of memory-mapped
buses. However, the transport interfaces can be used separately from the generic
payload to model specific protocols. Both the transaction type and the phase type
are template parameters of the non-blocking transport interface.

INITIATOR

Simulation time = 100ns

Simulation time = 110ns

Simulation time = 120ns

Simulation time = 130ns

TARGET

Begin response

Begin request

End Request

End Response

nb_transport(t, BEGIN_REQ,0ns)

nb_transport(t, END_REQ,0ns)

b_transport(t, BEGIN_RESP,0ns)

b_transport(t, END_RESP,0ns)

Return status – TLM Accepted

Return status – TLM Accepted

Return status – TLM Accepted

Return status – TLM Completed

Fig. 11.5  AT modeling style with non-blocking transport calls

11  ESL (Electronic System Level) Verification Methodology

229

There are two non-blocking transport methods, nb_transport_fw for use on the
forward path and nb_transport_bw for use on the backward path. Aside from their
names and calling direction, these two methods have similar semantics. Transactions
may be pipelined. The initiator could call nb_transport to send another transaction to
the target before having seen the final phase transition of the previous transaction.

The AT timing dependencies are modeled using four timing points for a transac-
tion: begin request, end request, begin response, and end response as shown in
Fig. 11.5. These act as synchronization points for the models.

Note that TLM2.0 allows both the blocking and the non-blocking modeling
styles to simulate together. The recommendation from the OSCI TLM2.0 working
group is to use LT modeling for software development and AT modeling for hard-
ware performance verification and hardware functional design verification.

11.3  �Virtual Platform Example

Figure 11.6 shows a virtual platform of a system with just enough logic to boot
Linux. A few things to note in this figure

ARM A9 Uni Processor TLM2.0 model is directly available from ARM (known
as ARM Fast Model) or a “C” version from QEMU (open source).

If you have the resources ($$) to acquire an ARM Fast Model of its CPUs, you are
home-free. If you write your own “C/C++” processor model or get it from QEMU,
you can still use it in the TLM2.0 virtual platform. The methodology is quite straight-
forward to take such a “C” or “C++” model and wrap it around with a TLM2.0 wrap-
per. Every time the CPU ARM A9 issues a load or store, the TLM2.0 wrapper traps
it as a transaction to be sent on the on the simple LT BUS. The LT BUS then routes
the transaction to the system memory. When read occurs (load), the A9 LT wrapper
waits for data to arrive from the system memory, “calls” the A9 “C” model, and pro-
vides the data. The A9 models waits until then and before resuming with the next
operation. This method works quite well. An engineer does not need to be a “C” or
“C++” guru to accomplish the task of building the TLM2.0 wrapper.

Let us discuss the simple Linux boot system depicted in Fig. 11.6.
The system memory is a very simple direct LT model that points to a memory

array. The LT model responds to Write/Read requests from the BUS and stores or
provides required data.

UART, timer, and interrupt controller were modeled directly in TLM2.0 LT mod-
eling style.

The UART talks to the Xterm emulated Keyboard and Terminal via UNIX
Sockets. UNIX sockets communicate directly with the UART LT model.

The BUS is a simple LT Router (address mapped).
Such a platform was created by the author and his team for one of his projects.

This platform could boot bare bone Linux in under 5 s (wall clock time). It was
faster than the hardware boot of Linux because the Linux used on this virtual plat-
form was a pared down version of full Linux. The virtual platform can boot the
operating system and can be used for embedded software development.

11.3  Virtual Platform Example

230

11.3.1  �Advantages of a Virtual Platform

•	 Such a platform, as part of a hierarchical verification methodology, will be available
way before RTL is ready, a significant advantage to software development teams.

•	 The platform allows software to be developed “at speed” (i.e., real time execution).
•	 Such a platform accurately (functionally) models the entire state (registers, local

memories, etc.) of an SoC/System. Hence the entire programmer’s view of SoC
functionality is available to the software developers before RTL is ready.

•	 Since the BUS is a TLM2.0 transaction level plug & play bus, the virtual plat-
form can be employed by IP vendors to try out their models of IP blocks and run
the software stack / device drivers. This guarantees the software compatibility of
a vendor’s IP.

•	 Users can simply create the TLM model of their IP employing such a virtual
platform, plug in their model to this virtual platform, and access it through the
software, running on top of the virtual platform.

11.3.2  �Open Virtual Platform (OVP) Initiative

This initiative was taken by the SystemC committees. The idea was to create a base
virtual platform (as in Fig. 11.6), TLM2.0 models (such as CPU, Peripheral models,
etc.), and make it available for engineering community at large to give them a leg up
on creating a virtual platform for embedded software development and design veri-
fication. I highly recommend visiting http://www.ovpworld.org website to get an

Fig. 11.6  Virtual platform to boot Linux

11  ESL (Electronic System Level) Verification Methodology

http://www.ovpworld.org

231

idea on the full scope of the capabilities of this platform. The entire platform is
TLM2.0 plug & play compatible with extensive API support.

Following is a high-level overview of the OVP org as described on the OVP
website (OVP n.d.):

The focus of OVP is to accelerate the adoption of the new way to develop embedded soft-
ware—especially for SoC and MPSoC/multi-core platforms. If you are developing software
to run in an embedded system you will probably already be using an Instruction Set Simulator
(ISS) and associated debugger. As you move to having multiple processors or cores in your
design then you will need more than just a single ISS. What is needed is a model of your
platform that includes models of all the processors or cores and models of the peripherals
and behavioral components that the software communicates with. This is a Virtual Platform,
or more simply just a simulation model of your design. OVP provides this for you: libraries
of processor and behavioral models, and APIs for building you own processors, peripherals
and platforms. There are even platform models available as source (we call these Extendable
Platform Kits). This is just what is needed to use existing models or build your own, and
OVP is easy to use, open, flexible, and importantly, free for non-commercial use.

11.3.3  �Rationale for Software Virtual Platforms (OVP n.d.)

The following quote is taken directly from the OVP website, since they are the best
source to describe the rationale behind their initiative:

The most common practice today for developing embedded software is to start to develop
initial software in a desktop Windows or Linux development environment and start unit
testing—with the software running in the general-purpose Operating System. This develop-
ment environment is often very different to the final target system—for example using host
threads as opposed to separate processors in the real system—requiring much re-writing/
modification/ porting for final deployment.

When a prototype of the embedded system or chip is available, the software is
ported to this target environment using cross compilers and related tools targeting
the embedded processors, such as ARM, MIPS, Renesas, PowerPC, etc. FPGAs
might be used in the prototype to emulate the SoC. A simple debugger is then often
connected via a JTAG port.

There are many challenges when using this traditional approach. If you use a
hardware prototype of your system, it is often unreliable, not readily available
within all your software developments sites (especially those offshore), it can be
physically unreliable, and worst of all, it is often available only very near to the end
of the targeted product development schedule. All these challenges contribute to
real problems in getting software available soon after product hardware availabil-
ity—the target should be to get the products embedded software up and running
very shortly after hardware availability.

Recently there has been much talk of developing software on hardware emula-
tors. Hardware emulators are often very large and very expensive and are very hard
to set up. They take the RTL of the design and run it on custom chips or FPGA-
based systems, and these execute the RTL which is the source of the design. Yes,
they can run significantly faster than the RTL simulators, and yes, they have accu-
racy of the RTL, but they suffer from two main problems: a) they require the RTL,
which means they are only useful for software development at the very end stages

11.3  Virtual Platform Example

232

of a chip project, and b) they are very slow when compared to instruction accurate
simulators such as OVPsim or Imperas. Hardware emulators are typically 1000
times slower to TLM2.0, for 1000 times more money!

These challenges become acute as more processors interact in the embedded sys-
tem. Then there are new challenges in multi-core or multi-processor systems where
often the hardware prototypes provide limited controllability, observability, and
debuggability. When tracking down complex multi-processor issues, the bugs are
often very hard to reproduce reliably and isolate in complex real-time hardware.

As a result, development teams are scrambling around looking for a better solution.
As more and more chips become multi-core, these teams are looking for a better solu-
tion than just awaiting the prototypes... they just cannot afford to be that late to market.

If there was a virtual model of the hardware platform that was available to the
software developers at the very earliest stage of the products development and if the
initial testing of software is done on a virtual platform, then they could reduce SoC
schedules by months and reduce initial development and maintenance costs signifi-
cantly for SoC embedded software.

This is what OVP is enabling: the availability of freely available virtual platform
models early in the product development cycle.

Yes, this methodology of having a model of the system to be used for software
development is more critical for an SoC or MPSoC where there is Software on Chip
or Multi-Processor Software on Chip, but it is also a benefit for developers of any
embedded software. It is far easier to develop software in conjunction with a good
simulation of a device than it is on the real embedded device.

OVP is targeting the building of models of embedded components to enable
embedded software to be developed efficiently.

Hardware analogy: In the mid-1980s there was a challenge in the chip hardware
design business—the chips were getting more and more complex, expensive to
build, and taking longer to fabricate—and productivity was a significant challenge.
By the end of 1980s, most chips were developed on simulation technology, and you
would be hard-pressed to find a chip that was sent for fabrication without significant
testing using hardware design simulators like Tegas, HILO, and Verilog-XL.

This move from a “develop prototype” to a “run simulation model-based meth-
odology” dramatically improved hardware development productivity and enabled
the hardware teams to harness complexity and manage exploding project schedules.
It also allowed the hardware teams to do more and more verification to improve the
quality and confidence in their designs.

11.4  �ESL/Virtual Platform for Design Verification

11.4.1  �Overview

Ok, so we have seen the virtues of virtual platform for software development and
high-level view of how ESL. But virtual platform also helps design verification.
Let’s look at a few applications and methodologies that help us achieve the goal of
design verification with a virtual platform.

11  ESL (Electronic System Level) Verification Methodology

233

Here are some ways in which we can use a virtual platform for design
verification:

	1.	 Virtual platform and RTL co-simulation and verification. Compare virtual platform
results with RTL results during simulation or during post-processing (Fig. 11.7).

	2.	 Use virtual platform as a reference model as part of UVM scoreboard (Fig. 11.9).
	3.	 ESL/virtual platform refine and reuse methodology. Refine and reuse a virtual

platform for test development. In other words, tests/testbenches developed on a
virtual platform are reusable on RTL platform.

Let us look at each of these methods in detail. There methods are not theoretical;
they have been implemented by the author and his team for use with multibillion
transistor SoCs.

11.4.2  �Virtual Platform and RTL Co-simulation and Verification

As discussed before, one of the main advantage of creating a virtual platform is that
it models the architectural (programmer’s view) state of the SoC to match 100%
with the SoC specs. In other words, the architectural state of virtual platform is
directly comparable with the RTL state. While this is not possible at clock granular-
ity (since virtual platform is at transaction level), it is indeed verifiable at transaction
level or at CPU instruction boundary.

For example, at the end of a read, the virtual platform will predict the read data, and
RTL must match it. Or when interrupt arrives, both the virtual platform and the RTL
must service it at the same “transaction” boundary. Another example, when a CPU
instruction retires, we can compare the complete register state of the CPU with that of
the RTL. They much match. For CPU verification, ISS (Instruction Set Simulator) has
been used for many years. ISS is nothing but a virtual platform of the CPU.

Fig. 11.7  Verification using TLM2.0 virtual platform and RTL co-simulation

11.4  ESL/Virtual Platform for Design Verification

234

In this section, we will see how a virtual platform built in TLM2.0 SystemC
standard can co-simulate with RTL and comparisons made at transaction level.

The first question that comes to mind is if a virtual platform runs at billions of cycles
per second (yes, this is not a typo) while RTL runs (at most) 500 cycles per second,
how do these two work in lock step? The answer is very simple as we see below.

Figure 11.7 shows two paths. The first path on top of the figure is the ESL path.
ESL behavioral (transaction level) testbench drives the ESL Model (i.e., the virtual
platform) and collects responses from the ESL model. It compares the ESL model
response with its predicted response and does what-I-call a first level of check for
the ESL model itself. Is the ESL model response correct? If so, it then considers the
ESL model response as the Expected Response for comparison with RTL response.

The second path at the bottom of the figure shows the UVM path. The first thing
to note here is that the stimulus (i.e., the UVM sequence) comes from the ESL tes-
tbench. This is important since this guarantees that both ESL and RTL are simulat-
ing their respective DUT with the same stimulus. There are many ways in which an
ESL model can interact with UVM testbench. The one shown here is through SC_
DPI which is the SystemC Direct Programming Interface (similar to SystemVerilog
DPI). The SC_DPI API allows you to send a transaction to the UVM agent model
where the transaction will be converted to UVM sequence. After that the UVM
simulation proceeds as described under the chapter on UVM (Chap. 4). The RTL
model simulates and produces a response which then goes through the UVM moni-
tor and scoreboard. The monitor of the UVM agent sends the RTL response transac-
tion to the scoreboard via analysis port. The scoreboard grabs the expected response
produced by the ESL model and compares it with RTL response. Note that this
comparison takes place at transaction level.

The speed at which ESL model simulates is hundreds of orders of magnitude
faster than RTL. So, with this approach the simulation speed will indeed crawl to the
speed of RTL. After every transaction that goes through ESL model, the ESL model
will stall until the ESL response is checked against RTL output. Of course, you can
deploy deep FIFOs to store ESL results and not stall ESL every so often.

There are many applications (such as checking a single frame output of a video
engine) where the ESL model acts as a perfect reference model and you can check
the output line by line of the resulting frame.

There is another variation on the comparison of outputs. This is shown in
Fig. 11.8. The idea is the same only that the RTL output as captured by the UVM
scoreboard uses SC_DPI (SystemC Direct Programming Interface) to send the
transaction-level output to the ESL model, and let ESL model compare it with the
RTL output transaction.

11.4.3  �Virtual Platform as a Reference Model in UVM Scoreboard

This methodology is quite like the one presented in Sect. 11.4.2. It is mainly a dif-
ferent presentation. In Fig. 11.9, a C++ stimulus model is wrapped with a TLM2.0
wrapper which can be accessed by SystemVerilog DPI (or SystemC DPI) interface.

11  ESL (Electronic System Level) Verification Methodology

http://dx.doi.org/10.1007/978-3-319-59418-7_4

235

The transaction-level interface TLM2.0 provides transactions to the UVM agent
sequencer via the DPI interface. The transaction from the C++/TLM2.0 model is
converted to a sequence by the DPI interface. These sequences are fetched by the
UVM agent sequencer and driven to the driver. Driver drives signal/cycle accurate
protocol to the DUT. Note that the ESL DUT acts both as a reference model for the
UVM scoreboard and a DUT.

But the ESL model is at C++ level. How can it communicate at cycle level with
the UVM driver? A TLM2.0 wrapper is built around the ESL model to convert ESL
model responses to transactions. Another wrapper on top of the TLM wrapper con-
verts each transaction into a cycle accurate transaction that can communicate with
the UVM driver.

The same ESLDUT (C/C++/SystemC) with its TLM2.0 wrapper (but not the
cycle accurate wrapper) is used by the UVM scoreboard at transaction level. The
UVM monitor takes the cycle accurate transactions from the UVM driver and con-
verts them into Transactions. These transactions are then compared with the trans-
actions received by the scoreboard from the ESL/TLM2.0 wrapper interface.
Figure 11.9 is quite self-explanatory.

11.4.4  �ESL to RTL Reuse Methodology

What is the refine and reuse methodology? We just saw in Sect. 11.4.3 that an ESL
DUT model was used both as a reference model and a DUT. This is what we mean
by reuse. There are other reuse scenarios that ESL use to help with RTL verification.
We need to keep in mind that RTL verification is the eventual goal and not the ESL
model verification.

Fig. 11.8  Verification using TLM2.0 virtual platform and RTL co-simulation using
SC_DPI

11.4  ESL/Virtual Platform for Design Verification

236

Here are the other use case scenarios of ESL reuse for RTL verification. We will
discuss these reuse cases in detail in upcoming sections.

•	 Reuse:

	1.	 Reuse ESL stimulus generation testbench to drive RTL design
	2.	 Reuse ESL response checking logic to check RTL output (at transaction

boundary)
	3.	 Reuse ESL model as a reference model for RTL design verification

•	 Return on investment (ROI)

–– Reuse allows for a good return on time/resources spent on ESL model devel-
opment and verification. You don’t have to repeat the stimulus generation
development all over when RTL is ready.

Why reuse from ESL to RTL? Here are advantages of the reuse methodology:

•	 You cannot completely verify at ESL. What this means is that ESL verification
provides a good reference model that is functionally accurate with the architec-
ture specs of the design. But at the end of the day:

–– RTL verification is still required before synthesis/gates, tape-out, and silicon.
–– ESL verification with TLM 2.0 LT/AT models does not account for clock

level concurrency.

•	 You create more than twice as much work without reuse:

–– Without reuse of ESL testbench/environment, you will simply reinvent the
wheel at RTL level with its longer time to develop, simulate, and debug.

COVERAGE

SV Scoreboard

TLM 2 Wrapper

OVM AGENT

DRIVERSEQUENCER

REUSE
SEQUENCE

LIBRARY

C++
Stimulus

TLM Stimulus

TLM 2 Wrapper

NEW
SEQUENCE

LIBRARY

MONITOR

Cycle Accurate DUT

CYCLE ACCURATE
WRAPPER

TLM 2 Wrapper

RTL
(SystemVerilog)

RTL
(SystemVerilog)

Cycle Accurate
(Driver)

Cycle Accurate
(Driver)

ESL Model
(SystemC, C/C++)

ESL Model
(SystemC, C/C++)

AT/LT AT/LT

ESL
DUT

ESL
DUT

DPI

DPI

Fig. 11.9  Virtual platform as a reference model in UVM scoreboard

11  ESL (Electronic System Level) Verification Methodology

237

So,

–– Reuse TLM model as a reference model for RTL verification.
–– Perform stepwise refinement, successively replacing TLM blocks to RTL as

described in Sect. 11.4.7.

•	 Verify functionality as much as possible at ESL level. This means that the entire
functional domain verification can be achieved at ESL level. This guarantees the
ESL model as the golden reference model against which RTL can be compared.
Only the SoC interface (and internal buses) verification remains at the RTL level.
A great saving in time (and money).

•	 To reiterate, reuse is not only for the testbench component but also for the model
component.

11.4.5  �Design and Verification Reuse: Algorithm ⇔ ESL:
TLM 2.0

Let us discuss step by step how do we reuse an ESL model and testbench for RTL
verification. First, this requires reuse of algorithmic ESL model to TLM2.0 model.
And second, it requires reuse of the TLM2.0 model to cycle accurate interface with
RTL.

First, let us tackle ESL (pure C/C++ algorithmic model) to TLM2.0 migration.
Figure 11.10 shows two stages to accomplish going from ESL to TLM2.0.
The first stage shows the ESL algorithmic model coded in C/C++/SystemC. It is

not at transaction level yet (think ISS—the Instruction Set Simulator). Both the
algorithmic level testbench and the DUT are modeled using procedural purely func-
tional languages like C/C++ or SystemC (even though SystemC has the concept of
time). This is the stage where you verify the entire “functional” domain of your
SoC. For example, if you want to verify the LRU (Least Recently Used) algorithm
of your cache, you can use this model. Or if you want to verify the Ethernet IPV4
(or IPV6) layer processing, you can use this model.

The second stage is to reuse the algorithmic purely functional C/C++ model to
develop the transaction-level model, so that the algorithm level functionality can be
broken down into transactions. For example, again going back to LRU algorithm,
each access to the cache and its access per LRU algorithm can be broken down into
transaction-level reads and writes. This is accomplished by getting responses from
the C/C++ model and converting them to TLM2.0 compliant transactions as shown
in Fig. 11.10. Note that both the testbench and the DUT model are being reused.
And that the verification is still at transaction level. The idea is to weed out all the
functional bugs before jumping into RTL verification.

11.4  ESL/Virtual Platform for Design Verification

238

11.4.6  �Design and Verification Reuse: ESL/TLM 2.0 ⇔ RTL

Now let us see how we go from TLM2.0 to RTL cycle accurate model and the
testbench.

As shown in Fig. 11.11, there are three stages involved. We discussed the first
two stages in Sect. 11.4.5. Now let us add the third stage.

The third stage is to “convert” (or wrap) the TLM2.0 model to a cycle accurate
model. This is shown in Fig. 11.11 as the “RTL Stage.” How do you do that? The
transactions from the TLM2.0 will mostly end up as read or write from the periph-
eral devices or the SoC internal registers/embedded memory or the external
DRAM. The cycle accurate wrapper will take these transactions and convert them
to an appropriate interface protocol. The protocol may be just an internal SoC bus
(like AXI or AHB or APB), or it could be an external peripheral device interface. In
either case, the transaction from the TLM2.0 will be converted to the protocol of the
“bus” to which the cycle accurate model is attached.

The cycle accurate model (wrapper) will be in SystemVerilog (as opposed to the
ESL/Algorithmic model in C/C++ and the TLM2.0 model in SystemC). In other
words, there are three levels of abstraction in three different languages. But note that
the ESL model is still the core of either the TLM2.0 or the cycle accurate model (as
shown in Fig. 11.11). In other words, we avoided reinventing the wheel at every

Fig. 11.10  Design and verification reuse: Algorithm ESL—TLM 2.0

11  ESL (Electronic System Level) Verification Methodology

239

stage. The high-level ESL model is easy to develop compared to developing the
functionality directly in TLM2.0 or the cycle accurate model. The next section
describes a very practical methodology that uses these reusable-derived models into
your design and verification flow. Such flows are being used by large SoC develop-
ment projects. The author has successfully deployed such a flow with significant
reduction in time/project schedules and accuracy of verification.

11.4.7  �Design and Verification Reuse: Algorithm ⇔
ESL-TLM 2.0 ⇔ RTL

Ok, so far, we saw how to “derive” a reusable model from ESL to TLM2.0 to cycle
accurate. But having a collection of models has no meaning. What do you do with
these models? How do you use them to create a time-saving accurate design and
verification methodology?

First, this methodology (Fig. 11.12) has been proven to work as part of TSMC’s
System Level ESL Reference Flows (RF10 and RF11). Mentor, Cadence, and
Synopsys all three vendors have implemented the flow shown in Fig. 11.12. These
reference flows are available with detailed application notes for TSMC customers.
The author architected and managed development of these working methodology/
flows. All three vendors have their own versions of such flows that are commercially
available.

Fig. 11.11  Design and verification reuse: ESL/TLM 2.0—RTL

11.4  ESL/Virtual Platform for Design Verification

240

The figure looks a bit cluttered. So, let’s break it down.

•	 The TOP horizontal flow is for reusable verification methodology.
•	 The MIDDLE horizontal flow is for reusable design methodology.
•	 The LAST horizontal box is for a unified debug methodologies.

Let us look at the first two flows, namely, reusable verification and reusable
design methodology flows. Note that the verification and design reusable flows go
hand in hand. The first stage of the flow is to develop the algorithm model. This is
the stage when architects of the design are validating their architecture and not wor-
ried about cycle accurate or even transaction-level detail. Corresponding to the
ESL/algorithm model development, we also develop a testbench at ESL (C, C++,
SystemC) level to verify the algorithm model. The ESL model and the testbench can
be considered the “seed” models for the entire flow. Note that the ESL model are
designed for each subsystem of the SoC. In other words, there needs to be a subsys-
tem level granularity for them to be reusable. For example, an ISS—Instruction Set
Simulator model is an algorithm model for the entire CPU. And this CPU is used as
an embedded processor in your single-/multi-core SoC. So, the ISS is considered a
subsystem level ESL model which can be reused as you move to more refined
lower-level stages.

Once you have modeled and verified the ESL models of your SoC, you need to be
able to reuse them at the next stage. The stage is where we move from ESL to trans-
action-level detail. As shown in Fig. 11.11 and Fig. 11.12, we wrap the ESL models
with TLM2.0 transaction-level wrapper to create a TLM2.0 (LT or AT) model of the

Fig. 11.12  Design and verification reuse: Algorithm—ESL-TLM 2.0—RTL

11  ESL (Electronic System Level) Verification Methodology

241

entire SoC. In other words, the logic of the SoC is reused from the ESL level and
converted to write/read/interrupt ack level transactions that will be closer to the final
SoC implementation. So, we reuse the ESL model at TLM level, and we also reuse
the ESL testbench to TLM level with similar flow. We wrap the ESL testbench with
TLM wrapper to make it communicate and verify the design TLM model.

This second stage of evolution is called the virtual platform stage. This is the stage
where the entire architectural state of the SoC is now modeled at TLM level. That
being the case, this stage is perfect for software development and power and perfor-
mance evaluation of the system. The TLM level platform simulates thousands of
orders of magnitude faster than the final RTL stage. This is also the stage where not
only the simulation is fast enough for software development, but the debug is also
that much easier since we are not dealing with cycle accurate information of the SoC.

Now the typical dilemma of DV (design verification) teams is that they would
like to start verification of the SoC RTL, but the RTL is not ready for the entire
SoC. Some subsystems are still at transaction (TLM) level, while others have
migrated to RTL. This is where the third stage comes into picture. For those subsys-
tems that are still at TLM level, we apply a wrapper on top of the TLM level to
convert the transactions into cycle accurate level (Figs. 11.11 and 11.12). Now you
have a system of RTL and ESL+TLM models all simulating together at cycle accu-
rate RTL level. Hence the DV teams do not need to wait until the RTL for the entire
SoC is available. The design team can plug & play with the TLM and RTL models
to finally move the entire SoC to RTL stage.

The testbench also deploys the same methodology as that of the TLM to RTL
progression. The testbench wraps itself around with cycle accurate wrapper that
takes transactions coming from the ESL+TLM testbench “core” and converts them
to the SoC peripheral cycle accurate activity.

Hence, we have created a completely reusable methodology for both design and
verification. Obviously, there will be come caveats to this methodology. For exam-
ple, if you have very heavily pipelined, superscalar subsystem, the TLM model
must be at AT (approximately timed) TLM level; else you won’t be able to reuse the
TLM level model (with its cycle accurate wrapper) at RTL level. These decisions
should be made upfront the design project so that you can achieve maximum reus-
ability throughout the migration from ESL to TLM to RTL stages.

Finally, the debug methodology (supported by all major EDA vendors) crosses
the boundary among ESL, TLM, and RTL. In other words, you should be able to see
transaction-level activity along with cycle accurate activity or ESL level (e.g., ISS
instruction execution) activity along with TLM and RTL level activity. Such unified
debug environment is a must for such a methodology to be practical. EDA vendors
have taken a notice of this and are offering such unified debug capabilities.

11.4  ESL/Virtual Platform for Design Verification

243© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_12

Chapter 12
Hardware/Software Co-verification

Chapter Introduction
An SoC is ready only when both its hardware and software components are ready.
You cannot ship silicon until its software is ready because without software, hard-
ware is pretty useless.

This chapter will discuss the methodologies to develop software such that it is
ready when hardware is ready to ship. What kind of platform do you need? How
does ESL virtual platform play a key role? How do emulators and accelerators fit in
the methodology equation?

12.1  �Overview

An SoC is ready to ship only when the complete application works, not just when
hardware simulations pass regressions. In other words, the ultimate test for a chip
is to see that it performs its applications correctly and completely. That means
executing the embedded software together with the RTL. Such tests require bil-
lions of cycles of execution and usually run at the system level, where design size
is the greatest. Simulating such applications even on advanced workstations is
simply too slow.

There are few fundamental ways in which hardware–software co-verification
takes place. These technologies help (to some extent) the requirement that the co-
verification run at meaningful speeds to allow for software execution and RTL run-
ning concurrently.

As a sidenote, virtual platform in the following can be virtual platform of the
peripheral interfaces of an SoC, or it can be an ISS (Instruction Set Simulator), or it
can be a virtual platform with embedded ISS. A common terminology of virtual
platform is used throughout this chapter.

244

	1.	 Virtual platform ⇔ RTL co-simulation (This approach is mentioned for the sake
of completeness. It does not yield the required clock speeds to effectively run
software. Hence it won’t be discussed further. It is feasible but impractical.).

	2.	 Same arguments apply for RTL ⇔ emulation co-simulation.
	3.	 Virtual platform ⇔ emulation.
	4.	 Virtual platform ⇔ hardware accelerator.
	5.	 Prototype FPGA board.

Let us look at these methodologies/technologies in detail.

12.2  �Hardware/Software Co-verification Using Virtual
Platform with Hardware Emulation

Before we dive into virtual platform and hardware emulation co-simulation detail,
let us take a quick look at what hardware emulation entails.

12.2.1  �Hardware Emulation and Prototyping

Hardware emulation is the process in which a piece of hardware is made to emulate
the behavior of one or more other hardware system under design. It is mostly carried
out on very-large-scale integrated circuit designs with the purpose of functionally
verifying the system under design. Hardware emulation is a technique that integrates
a hardware design into a reconfigurable (e.g., FPGA-based) prototyping platform to
allow the functional testing of a design under test including its firmware. This way
both hardware and software can be evaluated in a realistic performance setting.

There are main three commercially available emulation systems. Several other
vendors also provide FPGA-based prototype systems. Too many to enumerate here.

	1.	 Veloce-2: Mentor Graphics
	2.	 Palladium: Cadence Design Systems
	3.	 ZeBu Server-3: Synopsys

The following technologies are predominantly deployed to build hardware emu-
lation systems.

12.2.1.1  �FPGA-Based Hardware Emulator

First used in the 1990s, it lost appeal vis-à-vis to the custom processor-based archi-
tecture because of several shortcomings. In the past 10 years or so, the new genera-
tions of very large commercial FPGAs have helped to overcome many of the original
weaknesses. Its physical dimensions and power consumption are the smallest and

12  Hardware/Software Co-verification

245

lowest for equivalent design capacity. Among the drawbacks, its speed of compila-
tion is low, at least on designs of 10 million gates or more. The full design visibility
is achieved by trading off the higher speed of emulation.

12.2.1.2  �Custom Emulator-On-Chip Architecture

The custom chip could also contain debug circuitry, visibility mechanisms, and a
host of other capabilities.

Each chip can emulate a small piece of a design, and larger designs are handled
by interconnecting many of the chips together, again with sophisticated intercon-
nect capabilities.

Pioneered by a French start-up by the name of Meta Systems in the mid-1990s,
the emulator-on-chip architecture is based on a highly optimized custom FPGA that
includes an interconnect network for fast compilation, which also enables correct-
by-construction compilation. Design visibility is implemented in the silicon fabric
that assumes 100% access without probe compilation and rapid waveform tracing.
It has a few drawbacks; namely, it requires a farm of workstations for fast compila-
tion and has somewhat slower speed and larger physical dimensions than an emula-
tor based on commercial FPGAs of equivalent design capacity.

12.2.1.3  �Custom Processor-Based Architecture

Devised by IBM, it has been a proven technology since 1997 and dominated the
field in the decade from 2000 to 2010. Advantages include fast compilation, good
scalability, fast speed of execution in ICE mode, support from a comprehensive
catalog of speed bridges, and excellent debugging. Drawbacks are limited speed of
execution in TBA mode, large power consumption, and larger physical dimensions
than an emulator based on commercial FPGAs of equivalent design capacity.

12.2.2  �Emulation System Compile Time

One of the factors that affect selection of an emulation system is the compile (syn-
thesis) times to put RTL into the box. What good does it do for emulation to provide
results in minutes while compile times take hours. Yes, this is true. Hardware emula-
tors can accommodate any design size, but they require a long setup time and are
relatively slow to compile, compared to simulation.

While emulators can process billions of cycles in a relatively short time, on smaller
designs, the limitations may hinder the benefits of the fast speed. A simulation session
of 1 h may lead to higher productivity than an emulation session on the same design
running in 10 s. In an eight-hour day, a verification engineer can run more design itera-
tions, including compilation-execution-debug, than with emulation.

12.2  Hardware/Software Co-verification Using Virtual Platform with Hardware…

246

Note that in current advances in distributed computation, FPGA compile is now
done over CPU/server farms in parallel drastically reducing compile times. The
author does not have good, real-life data points to share, unfortunately.

While discussing requirements for fast compile times with an EDA vendor, the
following points need to be considered:

•	 Be 10X to 20X faster than traditional synthesis tools.
•	 Support for full and block synthesis modes, parallel, and incremental synthesis.
•	 Support for SystemVerilog, Verilog, VHDL, and mixed language designs.
•	 Support for user-defined primitives (UDPs) and automatic memory inferencing.
•	 Have enhanced debugging with support for synthesizable SystemVerilog

Assertions (SVA), RTL name preservation, and preload, read, and write support
for inferred memories.

•	 Efficient use of FPGA and emulator resources.
•	 Comparable area to traditional FPGA synthesis (−10% to +25%).
•	 Emulation speed equivalent to traditional FPGA synthesis.
•	 Interoperable with traditional FPGA synthesis tools.

12.2.3  �Difference Between Emulator and FPGA-Based
Prototype

So, if emulation systems could be based on FPGA, what’s the difference between an
emulator and a prototype board with FPGAs?

A key distinction between an emulator and an FPGA prototyping system has
been that the emulator provides a rich debug environment, while a prototyping sys-
tem has little or no debug capability and is primarily used after the design is
debugged to create multiple copies for system analysis and software development.
Prototypes has several limitations, primarily due to the difficulty of accessing sig-
nals. However, new tools that enable full RTL signal visibility with a small FPGA
LUT impact, allow deep capture depth and provide multi-chip and clock domain
analysis to allow efficient debug, comparable to the emulator.

FPGA prototypes are designed and built to achieve the highest speed of execu-
tion possible. When built in-house, each prototype often is optimized for speed tar-
geting one specific design. They trade off DUT mapping efforts, DUT debugging
capabilities (limiting them to a bare minimum that’s often useless), and deployment
flexibility and versatility. They’re used for embedded software validation ahead of
silicon availability and for final system validation.

Regardless of the technology implemented in an emulator – custom processor
based, custom emulator-on-chip based, and commercial FPGA based – they share
several characteristics that set them apart from an FPGA prototype board or system
(Rizzati):

•	 Emulators are targeting hardware debugging and, therefore, support 100% visi-
bility into the design without requiring compilation of probes. Differences exist

12  Hardware/Software Co-verification

247

between emulators in this critical capability, but they’re not significant when
compared to those of an FPGA prototyping system.

•	 Emulators can be used in several modes of operation and support a spectrum of
verification objectives, from hardware verification and hardware/software inte-
gration to firmware/operating system testing and system validation. They can be
used for multipower domain design verification and can generate switching
activity for power estimation.

12.2.4  �Myths About Emulation-Based Acceleration (Rizzati)

Some of the myths (Rizzati) that prevail in the industry about emulators are listed
below. This is to emphasize to the reader that emulation systems are indeed viable
and have come a long way from their counterparts a decade ago.

12.2.4.1  �Hardware Emulators Are Very Expensive to Acquire
and to Maintain

It was true in the old days, not so today. Today, the acquisition cost of a modern
emulator pales against the verification power and flexibility of the tool. A hardware
emulator is the most versatile verification engine ever developed. It has the perfor-
mance and capacity necessary to tackle even the most complicated debugging sce-
narios, which often include embedded software content. Just consider, from five
dollars per gate in the early 1990s, the unit cost now hovers around a couple of cents
per gate or less.

As strange as it may sound, the tool’s versatility makes hardware emulation the
cheapest verification solution when measured on a per-cycle basis.

The total cost of ownership also has dropped significantly. Gone are the days
when, figuratively, the emulator was delivered with a team of application engineers
in the box to operate and maintain it.

The reliability of the product has improved dramatically, reducing the cost of main-
tenance by orders of magnitude. In addition, the ease of use has simplified its usage.

12.2.4.2  �Hardware Emulation Is Used Exclusively in In-Circuit
Emulation (ICE) Mode

For the record, in ICE mode, the DUT mapped inside the emulator is driven by the
target system, where the taped-out chip would eventually reside. This was the
deployment mode that drove emulation’s conception and development – namely,
test the DUT with real-world traffic generated by the physical target system.

While this mode is still employed by many users, it’s not the only way to deploy
an emulator. In addition to ICE, emulators can be used in a variety of acceleration
modes. They can be driven by software-based testbenches via a PLI or DPI interface,

12.2  Hardware/Software Co-verification Using Virtual Platform with Hardware…

248

not popular because of the limited acceleration, but still usable to shorten the design
bring-up when switching from simulation to emulation or via a transaction-based
interface, whose popularity grows since the acceleration factor is in the same ball-
park of ICE, at least for some of the current emulators crop. They can be used in
stand-alone mode by mapping a synthesizable testbench inside the emulator together
with the DUT. And they can accelerate the validation of embedded software stored
in onboard or in tightly connected memories. Or, they can be used with combina-
tions of the above.

12.2.4.3  �Hardware Emulation Is Useless in Transaction-Based
Acceleration Mode

A still widespread misconception is that the transaction-based approach does not
work or, in the best case, is limited in performance when compared with ICE. The
concept was devised by IKOS Systems in the late 1990s, and it worked. After
Mentor Graphics acquired IKOS, it improved upon and pushed the technology as a
viable alternative to ICE.

Another and unique benefit of transaction-based acceleration is the ability to cre-
ate a virtual test environment to exercise the DUT that supports corner-cases analy-
sis, what-if analysis, and more that are not possible in ICE. An example is the
VirtuaLab implementation by Mentor Graphics. VirtuaLab models an entire target
system, such as USB, Ethernet, or HDMI, in a virtual environment.

12.2.4.4  �Dynamic Power Estimation Is a Critical Verification Task,
But Hardware Emulation Doesn’t Have the Capabilities
to Analyze the Power Consumed by an SoC

Another false statement. Dynamic power consumption analysis is based on tracking
the switching activity of all elements inside the design. The more granular the
design representation, the more accurate the analysis. Unfortunately, higher granu-
larity hinders the designer’s flexibility to make significant design changes to improve
the energy consumption. This can best be achieved at the architectural level.

Power consumption analysis at the register transfer level (RTL) and gate level of
modern SoC designs can be best accomplished with emulation. Only emulation has
the raw power to process vast amounts of logic and generate the switching activity
of all its elements.

12.3  �Speed Bridge

Note that emulators or accelerators are generally not able to run nearly as fast as the
real world. Most emulators can only muster a few MHz of clock speed, especially
when full visibility is made available. So, it is often necessary to insert a speed

12  Hardware/Software Co-verification

249

bridge that can handle the difference in execution rates each side of the bridge. This
may involve data buffering or manipulation of the protocols to artificially slow
down the real world to the rate that the emulator can handle.

To tackle the speed issue, the next major way an emulator/accelerator is used is
stand-alone. This means that the entire model fits into the emulator or accelerator,
along with a set of stimulus to exercise the model. It can run as fast as the emulator
is capable of, stopping only when additional stimulus is required, or when captured
data must be flushed out of the device. If the design contains a processor, it is also
likely that a version of the processor will exist for the emulator.

12.4  �Virtual Platform ⇔ Hardware Emulation Interface
and Methodology

Figure 12.1 shows virtual platform ⇔ bus interface transactors (SCE-MI: Standard
Co-Emulation Modeling Interface) ⇔ emulation methodology for hardware/soft-
ware co-verification. The communication between the TLM LT (Sect. 11.2.1)
adapter and the emulation side AXI master/slave transactor takes place via the so-
called SCE-MI. Both the virtual platform and emulator run in MHz speed and hence
sustain the performance required for software development, large regressions, etc.

Virtual prototype running
unmodified embedded SW

RTL for complex SoC
mapped to HW Emulator

PC Emulator

Virtual Prototype

LT
 B

us

Multi-core
processor
subsystem

Memory

TLM LT
adapter

AXI master
transactor

AXI slave
transactor

AXI master
transactor

AXI slave
transactor

GPIO & Legacy
peripherals

Custom
logic

USB

GPU

MCU Security
logic

TLM LT
adapter

TLM LT
adapter

TLM LT
adapter

SoC Design

Fig. 12.1  Virtual platform and hardware emulator methodology

12.4 � Virtual Platform ⇔ Hardware Emulation Interface and Methodology

http://dx.doi.org/10.1007/978-3-319-59418-7_11#Sec5

250

Here are some of the requirements for such an environment to work:

•	 Virtual components that can be assembled and configured easily to build a com-
plete virtual platform with all interfaces, devices, and peripherals are required for
application execution.

•	 Integration with SCE-MI API for TLM ⇔ emulation communication.
•	 Ability to emulate clocks in the emulation box giving maximum clock speeds

during co-simulation.
•	 Need high bandwidth (data streaming between virtual platform and emulator)

and low latency (rate at which messages can be processed by the virtual platform
proxies that interface with SCE-MI).

•	 RTL Master model and Slave BFM (Bus Functional Model) (written in
SystemVerilog) that act as transactors to interface with SCE-MI:

–– Emulation transactors should support common protocols and standards’ spec-
ifications such as PCI Express 3.0, AMBA, USB, MIPI CSI-2 and MIPI DSI,
I2C, I2S, Gigabit Ethernet and 10 Gigabit Ethernet, Digital Video, JTAG, etc.

–– The RTL BFMs should be synthesizable into the emulator to make sure that
the transactor is always synchronized to the emulated design.

•	 Memory models: SDRAM, DDR, DDR2, DDR3, DDR4, RLDRAM, Mobile
DDR, LPDDR2, LPDDR3, and GDDR5, plus a wide variety of flash and other
memory models. These models should leverage onboard memory resources of an
emulator and should completely synchronize with the emulated design, eliminat-
ing any issues with timing or refresh cycles.

•	 Software execution and debug while keeping synchronized with the hardware
(e.g., waveform dumping), so that you can see software registers or key buses
respond to actual software drivers and applications.

•	 Ability to immediately pinpoint and locate problems and malfunctions in a sys-
tem simulation of billions of cycles, through hardware monitors and traces, as
well as enabling all the standard software debugger features.

•	 Ability to analyze, benchmark, and measure the performance of key components
over long stress test scenarios.

12.4.1  �Different Types of Hardware/Software Co-verification
Configurations

Figure 12.2 gives a snapshot of the different methodologies available for hardware/
software co-verification. The figure shows all methodologies but the co-simulation
(signal level) is not a practical methodology for software development. The slow
speed at which the testbench simulates will drag down the emulator performance,
and the overall speed will be in KHz range at best. This is true for the “simulation”
methodology. It will be too slow for hardware/software co-simulation. But the
“simulation-only” methodology will allow for 100% visibility into RTL. You would

12  Hardware/Software Co-verification

251

run software/hardware co-emulation, and if there is a bug, you can switch to
“simulation-only” mode; run a very small snippet of code which found the bug and
then debug with full visibility into your design.

12.5  �Hardware/Software Co-verification Using Virtual
Platform with Hardware Accelerator

Accelerator is the technology product that speeds up software simulation by orders
of magnitude. In that sense, its job is to accelerate simulation just as emulation does.
Also, line has blurred between acceleration and emulation in recent years. As a mat-
ter of fact, all three major vendors namely, Mentor, Synopsys, and Cadence offer
hardware products that allow for emulation and acceleration from the same “box.”
In acceleration mode, the difference is you get excellent visibility into RTL. This
allows for quick debug and turnaround time. Emulation is getting there when it
comes to debug but cannot provide full visibility into RTL as acceleration does.
Acceleration runs in KHz, while Emulation runs in MHz.

Other than debug and compile speeds, emulation and acceleration technologies
work hand in hand from the same piece of hardware.

Host workstation External hardware Target system

Test
bench

Test
bench

Virtual
periph-
erals

Test
bench

Test
bench

DUT

DUT

DUT

DUTSCEMI/ZEMI

DUT
Simulation

Simulator

Emulator

Emulator

Emulator

Emulator

T
ransactorT

ra
ns

ac
to

r

Rate adapter

In-circuit
emulation (ICE)

Embedded
testbench

Co-simulation
(signal level)

Transaction-based
verification (TBV)

Fig. 12.2  Different types of hardware/software co-verification configurations

12.5 � Hardware/Software Co-verification Using Virtual Platform with Hardware…

252

12.5.1  �Cadence Palladium

There are some simulation accelerators that contain a large number of simple pro-
cessors, each of which simulates a small portion of the design, and then they pass
the results between them. Each of these processors runs slower than the processor
on your desktop, but the accelerator may possess thousands or millions of these
smaller processors, and the net result is significantly higher execution performance.
They can of course deal with parallelism directly as all of the processors are running
in parallel. An example of this type of hardware-assisted solution is the Palladium
product line from Cadence (Fig. 12.3). Each of the processors could have many
capabilities, such as dealing with visibility, debug, etc.

12.5.2  �Mentor Veloce

Within the direct implementation solutions, there are again two main types. These
are based on custom solutions or off-the-shelf solutions. With custom solutions,
there is going to be an FPGA-like structure somewhere in the device, although in
general they employ very different types of interconnect than would be seen in an
FPGA. The custom chip could also contain debug circuitry, visibility mechanisms,
and a host of other capabilities. Each chip is capable of emulating a small piece of
a design, and larger designs are handled by interconnecting many of the chips
together, again with sophisticated interconnect capabilities. An example of this type
of emulator is Veloce from Mentor Graphics (Fig. 12.4).

Fig. 12.3  Cadence Palladium XP Unified Xccelerator Emulator (UXE)

12  Hardware/Software Co-verification

253

12.5.3  �Synopsys Zebu

Synopsys Zebu Server (Fig. 12.5) also provides both emulation and acceleration
capabilities from the same product. It provides multiple verification use modes,
including power-aware emulation, simulation acceleration, in-circuit emulation,
synthesizable testbench, transaction-based verification, and hybrid emulation for
deployment flexibility based on project requirements.

Fig. 12.4  Mentor Graphics Veloce emulator/accelerator

Fig. 12.5  Synopsys Zebu emulator/accelerator

12.5  Hardware/Software Co-verification Using Virtual Platform with Hardware…

255© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_13

Chapter 13
Analog/Mixed Signal (AMS) Verification

Chapter Introduction
Current designs invariably have both the digital and analog components within a
block and also at SoC level. Without correct verification of analog voltage levels to
digital binary and vice versa, the design will be dead on arrival.

This chapter will go into high level discussion of major challenges and solutions,
the current state of affair, analog model abstraction levels, real number modeling,
SystemVerilog Assertions-based methodology, etc.

13.1  �Overview

Earlier SoCs of more than 15 years ago had clear separation of analog and digital
blocks. The analog blocks did not incorporate any digital circuitry and vice versa for
digital blocks. But as the geometry shrank, more functionality was introduced in the
SoC, and the discreet analog logic was incorporated directly on the SoC. The pro-
liferation of multimedia and RF applications was integrated on the same silicon die.
This resulted into tightly integrated analog and digital blocks. In earlier days, one
could model analog at SPICE level and verify it fully, and once the digital design
was ready, they were simulated at SPICE level to verify the IO connectivity with
digital blocks as well as the bias generator connectivity.

Analog designers are incorporating more digital techniques into the designs
because of the increased variability in smaller geometry manufacturing processes.
This means that many precision analog parts are now mixed signal in nature. The
complexity of mixed-signal System-on-Chip (SoC) designs is rapidly increasing
due to growing analog content, advanced analog and digital interfaces, and tougher
requirements for safety and reliability. This is driving a crucial need for advanced
verification methodologies and technologies. Figure 13.1 shows the industry trend
of AMS designs as part of the overall design starts.

256

13.2  �Major AMS Verification Challenges and Solutions

13.2.1  �Disparate Methodologies

As mentioned above, most SoCs are now mixed signal in nature and that brings
about a host of verification challenges. A significant part of the challenge is due to
different approaches, tools, and methodologies for analog (typically bottom-up) and

Fig. 13.1  Analog/mixed signal (AMS) design trends

13  Analog/Mixed Signal (AMS) Verification

257

digital (typically top-down) design and verification. These approaches need to be
bridged to handle mixed-signal designs.

The key is to have correct verification plan development based on correct parti-
tioning of the design to allow a top-down verification approach that can execute in
parallel to the development of bottom-up analog block. This means that you need a
methodology that addresses system-level verification all the way to gate-level veri-
fication for AMS to succeed.

This in turn means that you need different abstraction levels of models for both digi-
tal and analog blocks to allow verification at different levels. You need to balance simu-
lation speed and simulation coverage in your methodology. Design planning is used to
determine which parts of a design specification can be verified using higher levels of
abstraction and which parts must be verified using transistor-level abstraction.

In short, you need to bring together the digital top-down and analog bottom-up
methodologies to work cohesively in a verification environment. New approaches such
as the UVM-MS (Universal Verification Methodology-Mixed Signal) are being intro-
duced to extend the digital approach to the analog and mixed-signal parts of the design.

There are many reasons why top-level verification is mandatory. The primary
purpose is functional verification. Though each analog and digital block has been
verified and qualified individually with respect to specifications, designers must
ensure when assembling those blocks that the full image will work as expected.

Here’s what you should expect to find with TOP (system)-level integration of
analog and digital blocks:

•	 Connection errors: wrong signals, wrong power domain
•	 Incorrect bus wire connections
•	 Incorrect register bit use
•	 Misunderstood interface specifications: functional issue mismatch
•	 Clock phase–frequency mismatch
•	 Communication/activity during power down
•	 Current overconsumption
•	 Stability of IP with a real power supply, especially in startup phases
•	 Electrical behavior: rise/fall time, loading effects
•	 Current leakage
•	 Missing level shifter
•	 Floating gate
•	 IP performance, characterization
•	 Delay and timing issues: signals arriving a cycle or two late
•	 Bias mismatch

13.2.2  �Analog Model Abstractions and Simulation Performance

Figure 13.2 shows the trade-off between simulation accuracy and performance
among SPICE, FastSPICE, analog behavioral models (Verilog-A/AMS and VHDL-
AMS), RNM (SV-RNM), and pure digital simulation. These numbers are generic

13.2  Major AMS Verification Challenges and Solutions

258

and can vary significantly for different applications. Note the wide range of accu-
racy and performance that is possible for Verilog-AMS and VHDL-AMS behavioral
models. Pure digital simulation can only represent an analog signal as a single logic
value, but it might be sufficient for connectivity checks in mixed-signal SoCs.

Co-simulating digital discreet event driven with analog SPICE is mostly imprac-
tical because of the speed of SPICE (the slowest link in the chain). Analog SPICE
(or even FastSPICE) simulators are orders of magnitude slower than digital simula-
tors. Analog designers have traditionally relied on transistor-level circuit simulation
to verify their circuits. However, today’s designs are so large that it may take several
weeks to simulate a single aspect of a complete circuit. With a circuit that has mul-
tiple behavioral modes, each must be checked individually to expose all of the func-
tional errors in the design. For a design that implements hundreds of modes and
thousands of settings, this may require many months, and perhaps years, of simula-
tion time. Switching to the so-called “fast” simulators can provide some relief, but
they are still orders of magnitude too slow to be able to completely verify all modes
and settings of a complex analog design. Perhaps the most troublesome aspect of
relying on transistor-level simulation is that the regression tests development cannot
begin until a first pass of the entire design is complete.

Whereas we used to design op-amps, we now design multi-mode wireless trans-
ceivers. And while the scale of the designs has obviously grown fantastically, the
character of the designs has changed just as much. Analog designs have hundreds of
modes and thousands of settings. They implement sophisticated algorithms and
contain blocks that are self-calibrating and self-adapting. In a word, they are com-
plex. And while it is their performance that commands most of the attention of the
people that design them, it is now their complexity that is the source of most of the

Modeling Tradeoffs

Simulation Performance/Capacity

RNMs are the most effective
way to abstract AMS functioinality
for full chip simulation

A
cc

ur
ac

y

SPICE

FastSPICE

Conservative

Verilog-A

Verilog-AMS

VHDL-AMS
RNM
SV-RNM

Pure Digital

Fig. 13.2  Model abstraction level, accuracy, and simulation performance

13  Analog/Mixed Signal (AMS) Verification

259

catastrophic failures in their design. While this is a new situation for analog circuits,
it has been true for digital circuits for many years. Digital design teams addressed
this problem by adopting a strong functional verification methodology driven by
verification engineers. Analog designs have now gotten to the point where analog
design teams must do the same.

To tackle the simulation throughput issues, designers are turning to behavioral
modeling techniques for analog blocks which can increase the simulation speed of
AMS simulation. Behavioral modeling includes leveraging Verilog-A, Verilog-
AMS, and real number modeling-based event-driven simulation techniques.

Let us look at the model abstraction levels and see how each one can be deployed
at different simulation and verification stages.

Following abstraction levels are deployed by design teams to enhance simulation
performance. Simulation performance is by far the biggest bottleneck in AMS
simulation. Hence, multiple levels of abstractions are invented with language and
methodology support from EDA vendors

13.2.2.1  �Fully Behavioral, Digital Model of an Analog Block
(Modeled in Verilog)

These are the fastest models and have least amount of analog (voltage, current, etc.)
detail. These models are suited at architectural levels with digital blocks also at
behavioral level. For example, PLL models created at this level still provide full
PLL functionality required for digital blocks allowing you to continue behavioral
simulation without creating a black box for the analog PLL. Since Verilog doesn’t
allow real nets or ports, a rather tedious but rewarding workaround uses out-of-
module references (OOMRs) (Peruzzi n.d.) to pass signals from one digitally mod-
eled analog block to the next all the way from the input source to the A/D converter.
It must be assumed that connectivity and bias integrity are verified in other test
cases using more accurate models. This model type is suitable for simulating an
extensive digital section of the SoC along with the analog front end.

What Is OOMRs (Out-of-Module References)
Modeling a signal flow of voltages or currents is sufficient for high-level verifica-
tion, as opposed to modeling physically conservative networks obeying Kirchhoff’s
laws. Many times, one can use ordinary Verilog for models as mentioned above. An
analog “source” model for analog signals uses a fictitious sampling clock with
impossibly high sampling rate to create a sequence of real values on a real variable
inside that model. Verilog, unlike VHDL, has no concept of real ports or wires, so
one can write the module receiving the analog signal to look inside the source mod-
ule via OOMR.

Using this OOMR approach, the analog signal flows from a source through, say,
an amplifier, then a filter, to an analog-to-digital converter. The ports and wires of
the netlist cannot conduct the analog signal, so they may be separately used for veri-
fying continuity (Peruzzi n.d.).

13.2  Major AMS Verification Challenges and Solutions

260

13.2.2.2  �Fully Behavioral Electrical Model of an Analog Block (Modeled
in Verilog-AMS, Verilog-A, or VHDL-AMS)

These have more detail than the fully behavioral digital-only model. And they exe-
cute much faster than a SPICE model. Written in Verilog-AMS or VHDL-AMS,
these models describe analog behavior in terms of algebraic and differential equa-
tions rather than voltage and current. Their electrical I/O exhibit conservation of
charge, but internal functional behavior is described by real variables wherever pos-
sible. Behavior may be as accurate as required by skewing the modeling style toward
the SPICE behavior. This level of model is suitable for detailed SoC verification of
the interface, timing, and control of the collection of analog IP blocks in their entirety.

13.2.2.3  �Behavioral Model Using Real Number Modeling (RNM) (Using
“wreal” and “nettype”)

This model style may be written in plain digital VHDL or in Verilog-AMS. The signal
path through the model avoids the use of an analog circuit solver. It combines event-
driven and self-timed analysis and executes simple mathematical processing of the
signal. Plain digital Verilog has no concept of real wires or ports, but Verilog-AMS
includes ports and wires of type “wreal” (wire-real). SystemVerilog introduced “net-
type” for RNM. There is no feedback path in this style of modeling, and there is no
analog solver to choose the sampling points. Op-amps along with their feedback net-
work are replaced by gain blocks. A built-in sampling plan must be written into the
model which obeys the Nyquist criteria. As one might expect, this style of model exe-
cutes blazingly fast and is the top choice for verifying the full SoC signal path includ-
ing the analog section. Modeling the signal path using “wreal” and using electrical
modeling techniques for the bias and reference network results in a nice combination
of verification coverage and high execution speed. Section 3 goes into detail of RNM.

13.2.2.4  �Transistor: SPICE Level Modeling

As we know this is the most accurate and detailed model of an analog block. SPICE
models are the most detailed and exhibit conservation of charge on all electrical I/O
and internal nodes. The circuit is described in terms of voltage and current flow.
Generally unsuitable for SoC verification, SPICE models are valuable in top-down
design flows and in verification of analog subsystems.

Conclusions
Regardless of the kind of abstraction, it involves suppressing detail. It is critical that
whoever is formulating this abstraction understands what detail is suppressed. This
information must be communicated clearly to anyone who will use the model. Often
however, the person who writes the AMS models is not the one using them for veri-
fication. This is complicated by the fact that the verification engineer is typically

13  Analog/Mixed Signal (AMS) Verification

261

neither an analog expert nor an analog designer. Therefore, the risks of misunder-
standing things like the interfaces or the protocols when using AMS descriptions for
verification are high.

The communication challenge is compounded by the fact that AMS models writ-
ten at different levels of abstractions are not equivalent. They represent some ideal
effect plus some non-ideal ones. It is not possible to check whether they are equiva-
lent, except by checking whether they describe the same effects with the same level
of accuracy. AMS models are designed per the particular effect they will be used to
verify.

This is very important to understand because simulations done with AMS models
can catch only errors that are described in these models. In other words, these mod-
els will not highlight errors they are not designed to find. All of these imply that
more than one level of abstraction must be used when verifying a design, according
to what needs to be checked. It is important for the model writer to know what to
abstract, according to how the model will be used.

Design teams need to make sure to safeguard against such miscommunication.
This can be done by using a golden reference model that does not lose any detail,
such as SPICE. SPICE descriptions represent the model independently of how it
will be used. The SPICE model provides a golden reference against which these
various abstractions can be verified. It is also highly recommended to put assertions
within models to avoid misusing it during verification.

13.2.3  �Low-Power Management

With the advent of UPF (Unified Power Format), the analog design teams are being
expected to capture their power intent in UPF so that it can be integrated with the
power intent of the digital blocks. The logical to analog and vice versa conversion
crossing the digital-to-analog boundary depends on the power state. This is neces-
sary because the simulators must be simultaneously aware of the changing power
states of analog and digital blocks (changing power levels, shutoff and isolation
conditions, etc.). Industry is addressing these challenges with new tools and tech-
nologies, including static and formal methods.

13.2.3.1  �Power-Aware Connect Modules

Recent trends in mixed-signal verification tools have centered around the need for
each simulation domain (analog or digital) to communicate voltage levels, power
shutoff, or state retention concepts across the fence to the other simulation domain.

A key technology enabler has been the introduction of power-aware connect
modules, which act as interface elements between analog and digital domains. The
connect modules dynamically interrogate the power states (which are driven by the
UPF description) and present those states to the analog and digital simulation

13.2  Major AMS Verification Challenges and Solutions

262

engines in a manner appropriate for both those engines. As a result, the analog simu-
lation engine is aware of the power levels and conditions in the digital part of the
design and vice versa.

With the connect module, you can identify problems such as missing level shift-
ers, misconnected power domains, etc.

A connect module is placed on the analog-to-digital and digital-to-analog bound-
ary. When UPF is specified in the design, the connect module should have the
capability to not only convert signal values from the logic side to analog side but
also convert the correct UPF information from one signal to the other.

The connect modules are of two types: Logical2Electrical (L2E) conversion
module and the Electrical2Logical (E2L) conversion module.

Logical (Digital) to Electrical (Analog) Connect Module
The logical to electrical connect module is shown in Fig. 13.3. The conversion pro-
cess involves, at the least, the following:

	1.	 Conversion of four-state logic to the corresponding electrical voltage values as
defined by rules in the connect module. Currently available EDA solutions pro-
vide such connect modules and allow users to customize module parameters to
meet specs such as operating voltage, L2E reference voltage, etc.

	2.	 Detection of shutoff condition of the PD1 power domain and differentiation
between the “X” generated by power shutoff vs. a functional “X” coming in from
the digital domain. In the case of the power shutoff condition, the user may wish
to specify a certain electrical voltage or a range of voltage values to be able to
differentiate between the electrical power shutoff “X” vs. the functional “X.”

	3.	 Detection of nominal condition of a power domain and the voltage value associ-
ated with that nominal condition. For example, if VDD of PD1 is 1.2v, then a
1’b1 of the digital domain will be represented as 1.2v at the output of L2E con-
nect module.

	4.	 The supply voltage of the connect module L2E is linked with the power domain
of the digital instance PD1.

Electrical (Analog) to Logical (Digital) Connect Module (Fig. 13.4)
The need for an electrical to logical conversion arises from the fact that an analog
instance, whose behavior is expressed and simulated in the continuous domain, can
also reside in a switchable power domain. The following factors need to be noted
when performing an electrical to logic value conversion in power-aware fashion.

Fig. 13.3  Logical (digital) to electrical (analog) connect module

13  Analog/Mixed Signal (AMS) Verification

263

	1.	 The supply voltage of the E2L connect module must be linked with the working
voltage of the power domain of the digital module.

	2.	 The logic output of E2L will go “X” when PD1 is in shutdown mode.
	3.	 An isolation cell needs to be placed on the input of the digital block to prevent an

“X” propagating from the power-off domain into the power-on domain.

Reference Voltage Selection for Power-Aware Electrical to Logic Connect
Module (O’Riordan 2012)
A special note on the selection of which voltage reference to select for an E2L con-
nect module. Let us see how the connect module converts a high voltage of analog
domain into a 1’b1 for the logic domain OR if it ends up converting this high volt-
age into a 1’b0 to the digital logic domain. Hence, the reference voltage for the E2L
connect module is very important.

The choice of reference voltage for the E2L connect module can lead to unex-
pected results. In Fig. 13.5, the ANALOG block operates at 1.2v. If a logic “1” that
is an output from this analog device is fed into E2L module, it would expect a 3.3v
to convert input voltage to a logic “1.” So, if the reference voltage of E2L is con-
nected to the DIGITAL block’s operating voltage, you will get incorrect results.
Hence, the AMS Solution tools need to provide a choice of the operating voltage to
be connected as the reference voltage of the E2L module. In this case, you should
connect ANALOG block’s operating voltage 1.2v as the reference voltage for the
E2L module.

Fig. 13.4  Electrical (analog) to logical (digital) connect module

Fig. 13.5  Reference voltage selection for power-aware electrical to logic connect module

13.2  Major AMS Verification Challenges and Solutions

264

Multiple Drivers and Nominal Voltage Conflicts (O’Riordan 2012)
When multiple DIGITAL modules are connected to an ANALOG module (as shown
in Fig. 13.6), the question of reference voltage consistency must be considered. The
need for such consistency applies not only between the digital driving blocks but also
between the driving power domains and the receiving power domains. If the driving
DIGITAL modules have different nominal voltages, the choice of reference voltage
for the L2E connect module becomes ambiguous. That’s where the EDA vendor’s
AMS Solution should come to help and notify the user of such conflicts. Similarly, if
the driving domain nominal voltage (digital or analog) is different from that of the
receiving domain (digital or analog), we have another source of conflict, and the refer-
ence voltage selection for the L2E or the E2L connect modules becomes ambiguous.

13.3  �Real Number Modeling (RNM) of Analog Blocks

Real number modeling (wreal) represents the second generation of behavioral mod-
eling. It models the analog behavior in the digital domain using discretely simulated
REAL values. The result is a considerable speedup in simulation but with less accu-
racy. RN modeling uses event-driven mechanisms to model analog components
using real data values, but it treats time as discrete and manages events instead of
equations. In other words, it is a digital model. Simulation speed of several orders
of magnitude may be gained (more than 1000x is realistic).

Support for RNM in verification platforms allows the simulation of discrete, float-
ing-point real numbers that can represent voltage levels. RNM enables users to describe
an analog block as a signal flow model and then simulates it in a digital solver at near-
digital simulation speeds. For analog and mixed-signal block verification, RNM can be
used to speedup high-frequency portions of the analog signal path—which take the
longest to verify in simulation—while DC bias and low-frequency portions remain in
SPICE. But the greatest advantage of RNM is in top-level SoC verification, where
engineers can represent all electrical signals as RNM equivalents and stay within the
digital simulation environment. Hence, RNM enables SoC-level regressions to cover
full-chip functionality while maintaining high-simulation performance.

Fig. 13.6  Multiple drivers and nominal voltage conflicts

13  Analog/Mixed Signal (AMS) Verification

265

But first let us look at the differences between analog modeling and real number
modeling. Analog modeling has the following features:

•	 Describes current vs. voltage relationship between nodes in model.
•	 Newton–Raphson (WIKIPEDIA n.d.) iteration process performs matrix inver-

sion to solve all voltage and currents.
•	 Time step until next solution is selected based on accuracy criteria.

The real number modeling has the following features:

•	 No matrix solution–output computed directly from input and internal state.
Model defines when to perform each internal computational segment.

•	 No continuous time operation—only sampled, clocked, and/or event-driven
operations. Updates can be performed when inputs change at specific time
increments.

•	 Model analog blocks operation as signal flow model.
•	 Event driven. No analog solver is used.
•	 Resistance is not modeled (as of the writing of this book). (Advanced features

are being introduced to model impedance.)
•	 Same format for digital and real modeling—difference is data type.

AMS introduced “wreal” (wire-real) for analog behavioral modeling and
SystemVerilog introduced user-defined type (UDT) “nettype” and user-defined res-
olution (UDR) for real number modeling. Note that “wreal” is not supported in
Verilog-A.

13.3.1  �“wreal”

Let us first see how “wreal” works in Verilog-AMS.
Verilog-AMS extends the net data types to support a new type called “wreal” to

model real value nets. The “wreal” or wire-real or real net data type represents a
real-valued physical connection between structural entities. A “wreal” net cannot
store its value. A “wreal” net can be used for real-valued nets which are driven by a
single driver, such as a continuous assignment. If no driver is connected to a “wreal”
net, its value is zero (0.0). Unlike other digital nets which have an initial value of
“z,” “wreal” nets has an initial value of zero.

“wreal” nets can only be connected to compatible interconnect and other “wreal”
or “real” expressions. They cannot be connected to any other wires, although con-
nection to explicitly declared 64-bit wires can be done via system tasks $realtobits
and $bitstoreal. Compatible interconnect are nets of type wire, tri, and “wreal”
where the IEEE Std. 1364-2005 Verilog HDL net resolution is extended for “wreal.”
When the two nets connected by a port are of nettype “wreal” and wire/tri, the
resulting single net will be assigned as “wreal.” Connection to other nettypes will
result in an error.

13.3  Real Number Modeling (RNM) of Analog Blocks

266

Here’s a very simple example (Accelera, Verilog-AMS LRM Rev. 2.4):

module drv (in, out);
 input in;
 output out;
 wreal in;
 electrical out;
 analog begin
 V(out) <+ in;
 end
endmodule

module top ();
 real stim;
 electrical load;
 wreal wrstim;
 assign wrstim = stim;
 drv f1(wrstim, load);
 always begin
 #1 stim = stim + 0.1;
 end
endmodule

As mentioned above, Verilog-AMS supports ports which are declared to be real
valued and have a discrete-time discipline using “wreal.” There can be a maximum
of one driver of a real-value net such as “wreal.” Here’s an example:

module top ();
wreal stim;
reg clk;
wire [1:8] out;
 testbench tb1 (stim, clk);
 a2d dut (out, stim, clk);
initial clk = 0;
always #1 clk = ~clk;
endmodule

module testbench (wout, clk);
output wout;
input clk;
real out;
wire clk;
wreal wout;
 assign wout = out;
 always @(posedge clk) begin
 out = out + $abstime;
 end
endmodule

13  Analog/Mixed Signal (AMS) Verification

267

module a2d(dout, in, clk);
output [1:8] dout;
input in, clk;
wreal in;
wire clk;
reg [1:8] dout;
real residue;
integer i;
 always @(negedge clk) begin
 residue = in;
 for (i = 8; i >= 1; i = i - 1) begin
 if (residue > 0.5) begin
 dout[i] = 1'b1;
 residue = residue - 0.5;
 end
 else begin
 dout[i] = 1'b0;
 end
 residue = residue*2;
 end
 end
endmodule

13.3.2  �“nettype”

A SystemVerilog user-defined “nettype” without any resolution function can be
declared as:

nettype myT myNet,

where “nettype” is the keyword, myT is the user-defined type (UDT), and myNet is
the nettype identifier.

In general, “nettype” provides the following features:

•	 User-defined types (UDT) that can hold one or more real values
•	 User-defined resolution (UDR) functions
•	 Modeling flexibility
•	 Provides high performance and broad modeling capabilities for faster verifica-

tion with higher accuracy

13.3  Real Number Modeling (RNM) of Analog Blocks

268

Here’s a simple example (Ron Vogelsong 2015):

typedef struct {
real voltage;
real current;
bit field3;
integer field4;
} myT;

module top;
nettype myT myNet;
myNet w;
assign w = myT’{0.1,0.2,1’b1,10};
initial begin
 $display("Value of w -> %f => %p",$realtime, w);
 #1 $display("Value of w -> %f => %p",$realtime, w);
 #5 $display("Value of w -> %f => %p",$realtime, w);
end
endmodule

A type definition of myT is defined and used as the user-defined type (UDT) for
the “nettype” myNet. “w” is declared a type of myNet. Since the nettype myNet is
of UDT myT, we can assign the values to the myT struct. The rest of the code is
self-explanatory. Here’s the output from simulation of this model:

Value of w -> 0.000000 => '{voltage:0, current:0, field3:'h0, fileld4:x}
Value of w -> 1.000000 => '{voltage:0.1, current:0.2, field3:'h1, fileld4:10}
Value of w -> 6.000000 => '{voltage:0.1, current:0.2, field3:'h1, fileld4:10}

Here’s a quick summary of UDT and UDR:

•	 User-defined types (UDTs):

–– Allows for single-value real nettypes.
–– Keyword used: nettype.
–– Allows for multi-value nets (multi-field record style)
–– It can hold one or more values (such as voltage, current, impedance) in a

single complex data type (struct) that can be sent over a wire.

•	 User-defined resolution (UDRs):

–– Functions to resolve user-defined types using keyword: with
–– Specifies how to combine user-defined types

13  Analog/Mixed Signal (AMS) Verification

269

Here are a couple of case studies that Cadence presented in CDNLive 2015 (Ron
Vogelsong 2015):

Case study 1: A voltage-controlled oscillator

Case study 2: 14-bit ADC + 14-bit DAC

13.4  �AMS Assertion (SVA)-Based Methodology

Assertion-based verification (ABV) is a powerful verification approach that has
been proven to help digital IC architects, designers, and verification engineers
improve design quality and reduce time to market. But ABV has rarely been applied
to analog/mixed-signal verification.

Assertions for Verilog-AMS and SystemVerilog-AMS are still under develop-
ment with Accelera technical subcommittees (as of writing of this book). Issues
such as the following are under discussion.

Several questions need to be answered before AMS assertions are brought into
practice: (a) How will the languages for AMS assertions be different from the ones
in the digital domain? (b) Should the analog simulator be assertion aware? (c) If so,
then how and where on the time line will the AMS assertion checker synchronize
with the analog simulator? (d) What will be the performance penalty for monitoring
AMS assertions accurately over analog simulation?

While many companies crave a standardized approach (O’Riordan 2012) to such
assertion management, some have found even co-simulation-based solutions
employing the standard PSL/SVA languages to be either excessive in terms of setup
cost (for a mixed-signal/digital simulator such as NCSIM or VCS) or simply unpal-
atable to their heavily SPICE-based design community. Finally, due to these issues,
many customers have abandoned (Bhattacharya D. O. 2012) efforts to continuously
verify “analog” blocks when integrating them in a mixed-signal/SoC (System-on-
Chip) environment, leading to “plug and pray”-based integration attempts (and the
subsequent mixed-signal tape-out nightmares).

There is an excellent article by Prabal Bhattacharya that sheds light on possible
solutions to deploying SVA for AMS (Bhattacharya P 2012).

13.4 � AMS Assertion (SVA)-Based Methodology

270

Here’s what Accelera has to say about the current state of affair with
SystemVerilog-AMS:

The working group is currently working on alignment of Verilog-AMS with the
SystemVerilog work of the IEEE 1800, or inclusion of AMS capabilities in a new
‘SystemVerilog AMS’ standard. In addition, work is underway to focus on new features and
enhancements requested by the community to improve mixed-signal design and verifica-
tion, as well as to extend SystemVerilog Assertions to analog and mixed-signal designs.

Since the dust haven’t settled down, many have resorted to homegrown solu-
tions. The author does not feel such homegrown solutions should be publicized in
this book. Hence, this important topic will be covered in a second edition of this
book as soon as a standard version is published.

Please refer to Chap. 6 for a detailed description of SystemVerilog Assertions for
digital systems.

13.5  �AMS Simulator: What Features Should It Support?

Having gone through the methodology and planning aspects of AMS simulation,
here are the guidelines on what you should look for when deciding on an AMS
simulator. Your EDA vendor should be able to explain the following.

13.5.1  �Integrated Simulation Solution for Fastest Simulation
Throughput

By natively integrating advanced technologies for functional and low-power verifi-
cation, coupled with analog extensions to the proven UVM methodology, an EDA
solution should provide for the rapid development of a coverage-driven, constrained
random testbench that can be run in parallel across compute farms to reduce overall
regression testing cost. Some EDA vendors offer the so-called multi-core technol-
ogy in their SPICE or FastSPICE engine. This delivers even higher verification
throughput, enabling scalable mixed-signal regression testing with transistor-level
accuracy. This allows users to directly use SPICE for small-/medium-sized analog
blocks without resorting to behavioral modeling of the analog blocks. These are
claims; the author hasn’t independently verified these claims!

13.5.2  �Support for Wide Spectrum of Design Languages

As different mixed-signal design applications require different configurations of
SPICE netlist, RTL, and behavioral models, flexibility in languages and topologies
supported is crucial for a mixed-signal verification solution. The simulator should sup-
port Verilog-AMS, real number modeling, SystemVerilog, Verilog, VHDL, and SPICE.

13  Analog/Mixed Signal (AMS) Verification

http://dx.doi.org/10.1007/978-3-319-59418-7_6

271

13.5.3  �Support for Different Levels of Model Abstraction

As we discussed before, you need to deploy different levels of analog models to
satisfy the performance needs of verification from system level to transistor level.
The simulator should support mix and match of all the abstraction levels at any
hierarchical level.

13.5.4  �AMS Low-Power Verification Support

EDA solution should provide a comprehensive mixed-signal low-power verification
solution, supporting UPF, for mixed-signal designs and provide a system-level solu-
tion for low power.

13.5.5  �Support for SystemVerilog-Based UVM Methodology
Including Coverage-Driven and Assertion-Based
Methodologies

The EDA solution should extend the proven SystemVerilog UVM-based methodol-
ogy for AMS, allow “assertions” on analog nodes, be able to sample analog nodes
to monitor incoming traffic, be able to drive constrained random stimuli on analog
nodes, support analog coverage (“coverpoints” on analog nodes), and support
regression management in a mixed-signal context.

13.5  AMS Simulator: What Features Should It Support?

273© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_14

Chapter 14
SoC Interconnect Verification

Chapter Introduction
Today’s SoC contains hundreds of pre-verified IPs, memory controller, DMA
engines, etc. All these components need to communicate with each other using
many different interconnect technologies (cross-bus-based, NoC (Network-on-
Chip)-based, etc.).

This chapter will discuss challenges and solutions and interconnect verification
methodology and discuss a couple of EDA vendor solutions, among other things.

14.1  �Overview

With increasing numbers of CPU cores, multimedia subsystems, and communica-
tion IPs in today’s System on Chips, the main SoC interconnects, crossbars, or
Network-on-Chip (NoC) fabrics become key components of the system. The verifi-
cation of the SoC bus interconnects faces the challenge of verifying the correct
routing of transactions as well as security and protection modes, power-management
features, virtual address space, and bus protocol translations while still reaching
project milestones.

Remember the days when engineers used to be able to rely on buses to perform
the on-chip communication function in chips? Those days are clearly in the past,
especially as our increasingly connected world demands so much more functional-
ity from our chips. Today’s advanced SoC calls for an interconnect to serve as the
communication hub for various IP cores within the SoC. Verifying the functionality
and performance of SoC interconnects can be a complex task, given the amount of
masters and targets, the different protocols, different types of transactions, and mul-
tilayered topology involved. A more holistic approach using tools and technologies
can simplify the process of verifying the functionality and performance of SoC
interconnects.

274

Many SoCs now employ sophisticated interconnect fabric IP to link multiple
processor cores, caches, memories, and dozens of other IP blocks. These intercon-
nect fabrics are enabling new generations of low-power servers and high-
performance mobile devices. However, sophisticated interconnects are highly
configurable and that creates design and verification challenges.

Fig. 14.1 shows a typical SoC interconnect that comprises of three buses, namely,
AXI (for internal CPU, memory fast speed), AHB (for internal nonperformance
critical blocks), and APB (for peripheral connections). These fabrics are chained
together via bridges or a big fabric for overall communication. This adds more chal-
lenges for verification, since the scope of verification now increases to multiple
interconnects in a system. Also, protocol conversion needs to be considered within
a possible hybrid topology.

We need to verify the end-to-end transaction routes from a master interface to a
slave interface. Let us discuss the challenges that the SoC interconnect verification
poses and solutions thereof.

14.2  �SoC Interconnect Verification: Challenges and Solutions

As the complexity of SoC and, thereby, the interconnect increases, we must address
the challenges that its verification imposes. Let us look at the challenges from a
project point of view.

Fig. 14.1  SoC interconnect example

14  SoC Interconnect Verification

275

SoC Interconnect Verification Challenges

	1.	 Functional Correctness
An ideal verification environment should guarantee correct stimulus genera-

tion, response/protocol checker, and coverage collection. Our previous BFM and
direct test cases are inadequate to achieve this goal.

	2.	 Verification Completeness
This covers the systematic transaction checking around layered interconnects,

and it becomes more crucial when the design complexity increases. In a complex
SoC, there will be multiple layered interconnects in which different protocols are
involved. We need a sophisticated mechanism to check every transaction from
point to point, even with different protocols, from different paths, and even in
parallel execution. For example, a CPU can issue a transaction across an AXI
interconnect to a slave which is tied to an AXI2AHB bridge, which is finally
transferred to another AXI interconnect.

	3.	 Protocol and Protocol Conversion Compliance
AXI, APB, AHB, OCP, etc. and AXI to AHB to APB type of bridge connec-

tions require protocol conversions, including error response checking.
	4.	 Stress Verification

Random and concurrent (all initiators firing at all targets at the same time).
There will be more of this later in the chapter.

	5.	 Security Management
Nowadays, interconnects include security management (firewall) features.

The basic role of security management is to forbid unsecured transactions tar-
geted to secured/protected memory space. This security feature is to prevent
software attacks stemming from illegal instruction execution. The DV environ-
ment should check each transaction requested by initiators and abort with error
response if that transaction is targeting a protected area. Slaves such as larger
memory arrays can have more than one different protection regions, each having
their own priority level.

	6.	 Power Management
SoC interconnect can manage power consumption across all the functional

blocks on the SoC and all the connections between them. Since the interconnect
touches all blocks of a design, it provides the ideal opportunity to enhance the
following power-management best practices. This in turn means that we must
have verification environment to verify the following:

•	 Datapath optimization and performance modeling
•	 Voltage/power/clock domain partitioning
•	 Power disconnect protocol
•	 Asynchronous clock domain crossing
•	 Clock gating—fine grained and unit level
•	 Partial retention
•	 Performance probe used as feedback for DVFS

14.2  SoC Interconnect Verification: Challenges and Solutions

276

Power-management features add the following constraints to the verification
environment:

•	 The interconnect scoreboard should provide support to the power-manage-
ment features.

•	 The power up sequence should therefore be tested while stressing the bus with
other transactions. The use of high-level system sequence controlling the dif-
ferent master/target models enables this verification.

•	 Proper functional metrics should be provided to ensure the conditions have
been reached.

	7.	 Cache Coherency (for Cached NoC)
For instance, cache coherency protocols may not complete a transaction to its

targeted destination in case the information already exists in interconnect cache
(write-back cache). Scoreboard checker implementation needs to be extended to
take this into account.

	8.	 Functional Errors due to Interconnect Latencies
For instance, unmatched bandwidth for DMA read and write channel. Due to

interconnect routing latencies from request to request and response to response,
a DMA engine would not be able to throttle outstanding transactions. The DMA
engine FIFO depth could be insufficient for required SoC bandwidth.

14.2.1  �Performance Analysis

Performance verification is where designers should make sure that the design will
meet its targeted bandwidth and latency levels. Consider an SoC design with mul-
tiple interconnects to prevent localized traffic from affecting the rest of the device’s
subsystems. Interconnect IP plays an important role here, as it can tune each port
for unique bus widths, address maps, and clock speed. Usually, there are also
mechanisms to adjust bandwidth and latency to tune the interconnect IP in each
domain.

However, there are still instances where traffic conflicts will occur. How can traf-
fic in these situations be balanced? Most systems don’t have enough main memory
bandwidth to accommodate all IP blocks being active simultaneously. What’s
important is preventing one IP block from dominating and overwhelming the oth-
ers; otherwise, system performance degrades. Performance analysis can be helpful
in this situation, minimizing the impact of system performance degradation.

To make performance analysis as effective and efficient as possible, there are a
few aspects you should strive to integrate into the process (Nick Heaton n.d.):

•	 Cycle-accurate modeling—With cycle accuracy, the logic simulation yields the
same ordering of events with the same timing as will be seen in the actual chip.
Cycle-accurate simulation models include the RTL-level Verilog or VHDL cre-
ated during the SoC design process.

14  SoC Interconnect Verification

277

•	 Automatic RTL generation—Automatically generated interconnect RTL is a
step toward creating a full SoC cycle-accurate model. To determine the combina-
tion that provides the best overall performance, designers need to be able to
quickly generate multiple variations of the interconnect IP.

•	 Verification IP and SystemVerilog Assertions help find protocol violations.
•	 Testbench generation—Generating testbenches automatically saves several

weeks that development can otherwise take to create a test environment for
interconnects.

•	 In-depth analysis—The ability to gather all simulation data—design assessment,
the testbench, and traffic—is necessary to debug performance problems and
determine how design changes might affect bandwidth and latency.

14.3  �Interconnect Functional Correctness and Verification
Completeness

Functional correctness and verification completeness (which includes stress verifi-
cation) go hand in hand. You need to make sure that interconnect is functionally
correct and also make sure that you have covered all cases of verification including
corner cases, error conditions, etc.

As mentioned above, we need to create a robust Stimulus Generator, a response
checker, and a coverage model/methodology to counter the challenges of robust
functional correctness of the interconnect.

14.3.1  �SoC Interconnect Stimulus Generation

Directed test. First, we need to make sure that the interconnect works well for each
subsystem of the design. What’s a subsystem? Refer to Fig. 16.1 voice over IP
(VoIP) SoC verification and description thereof to get detailed understanding of a
subsystem. For the SoC in Fig. 16.1, we identify Ethernet subsystem, TDM subsys-
tem, PCI subsystem, ARM-CPU subsystem, and memory subsystem.

As part of the verification of these subsystems, you are essentially performing an
end-to-end verification of the interconnect in a directed manner. For example, the
PCI subsystem goes from PCI to internal registers of CAM, TDM, Ethernet, and
DDRC modules. This directly covers majority of the interconnect for both write and
read operations. If there were any bugs in SoC interconnect protocol interface
among modules or internal modules and peripherals, they would surface during
subsystem verification. Please refer to Chap. 16 for a complete description of SoC
subsystem verification.

Constrained random concurrent test. Having completed a directed verification of
interconnect protocols and protocol conversion bridges, we need to now methodi-

14.3  Interconnect Functional Correctness and Verification Completeness

http://dx.doi.org/10.1007/978-3-319-59418-7_16#Fig1
http://dx.doi.org/10.1007/978-3-319-59418-7_16#Fig1

278

cally move toward concurrent but constrained verification to incrementally stress
the interconnect fabric for corner cases. For this to happen, you need to simulate
multiple subsystems concurrently.

This means, each subsystem needs to fire at the same time concurrently through
a virtual sequencer as shown in Fig. 16.1. This requires careful planning though:

•	 Address map needs to be divided among each subsystem such that their memory
accesses do not clobber each other.

•	 You cannot write/read from internal registers at the same time.

Example subsystems for constrained concurrency could be:

•	 PCI write/read from external DDR the same time as ARM write/read to
DDR. This will not only stress the interconnect for simultaneous traffic but also
the DDRC as a side benefit.

•	 Ethernet receive packets interrupt ARM for Rx processing the same time that
DMA is transmitting a packet over the Ethernet Tx.

•	 ARM write/read of the (for example) CAM registers the same time that PCI
writes/reads from Ethernet subsystem. Swap around modules for register
write/read in a similar manner.

14.4  �Stress Verification: Random Concurrent Tests

Once you have verified a good combination of collision among subsystem, it’s time
to turn on the full force of complete random concurrency. Complete concurrency
means all subsystems firing at the same time (which will be the case in real life,
anyway). The traffic needs to be concurrent among embedded ARM CPU along
with traffic from all the external peripherals. To reiterate, this requires careful plan-
ning as noted above.

This will not only stress the interconnect for functional verification but also for
its latencies and performance verification. For example, when PCI is accessing
DDR the same time as ARM, how will ARM’s performance get affected by the traf-
fic from PCI? Will the interconnect prioritize ARM over PCI? Or what happens
when DMA is transmitting a packet the same time that the Ethernet/MAC is receiv-
ing a packet? Will Ethernet receive subsystem drop packets?

Such full concurrency is a must for interconnect verification as well as for per-
formance verification. Internal dead locks, live locks, stalls, packet drops, incorrect
register write/read, etc. will surface.

14.5  �SoC Interconnect Response Checker

Ok, now that we have formulated a stimulus generation plan and methodology, how
will we make sure that the response provided by SoC under directed and stress veri-
fication is correct?

14  SoC Interconnect Verification

http://dx.doi.org/10.1007/978-3-319-59418-7_16#Fig1

279

•	 Write and read tests. Write SoC internal programmable registers from each
subsystem that can do so. Keep a golden stack of write values. Then read back
the same register and compare with the golden stack. Any discrepancy is either a
bug in the register write/read logic or a bug in the interconnect. Interconnect bug
could be that write went through, but read did not get translated correctly going
from AXI to AHB bridge!

•	 Protocol checkers. Rely on SystemVerilog Assertions to do this check. Apply all
required protocol checks using SystemVerilog Assertions (Chap. 6). Apply SVA
assertions on AXI, AHB, and APB for protocol compliancy. This will catch,
among many, issues with interface protocol conversion bridge bugs (e.g., AXI to
AHB bridge or AHB to APB bridge).

•	 Memory subsystem response checker. For heavy stress traffic, the register
write/read, SVA, and an additional memory subsystem checker will cover the
entire space. The memory subsystem response checker will write/read randomly
from the DDR, and a reference model sitting on top of the memory subsystem
will do the same. At the end of the simulation, compare the memory dump of
DDR with that of the reference model.

14.6  �SoC Interconnect Coverage Measurement

Please refer to Chap. 7 for a detailed description on how SystemVerilog functional
coverage works and how it can be applied. That chapter discusses a PCI example,
which is directly applicable here.

Coverage comprises of code coverage and functional coverage (Chap. 7). For
example, PCI subsystem code coverage will tell us if all PCI master and PCI target
states were covered (i.e., all different types of PCI cycles were exercised on the
interconnect). But code coverage will not tell you if transitions among all the cycles
were exercised. In other words, the “transition functional coverage” will tell you if
you exercised PCI Write to PCI Read to PCI IO Write transitions or that PCI Config
Write followed by PCI Write followed by PCI Read, etc. Such transitions are pos-
sible only through functional coverage. To highlight a coverage model for the inter-
connect, you need to cover the following:

•	 Interconnect code coverage.
•	 Interconnect bus cycle transitions functional coverage as well as coverage for all

bus cycle types.
•	 “Cross” (functional coverage feature) between CPU transactions and external

peripheral transactions. Many such “cross” exist in an SoC.
•	 Interconnect protocol coverage through SystemVerilog Assertions cover state-

ment. This includes AXI ⇔ AHB ⇔ APB bridge protocol.
•	 Interconnect (NoC) register coverage.
•	 Interconnect (NoC) internal state machine state transitions.
•	 Cache coherent coverage:

–– Cache protocol functional coverage (e.g., MESI protocol coverage)

14.6  SoC Interconnect Coverage Measurement

http://dx.doi.org/10.1007/978-3-319-59418-7_6
http://dx.doi.org/10.1007/978-3-319-59418-7_7
http://dx.doi.org/10.1007/978-3-319-59418-7_7

280

–– Cache line granularity (byte, word, dword, line) functional coverage
–– Snoop conversions, snoop propagation, and snoop filter operation
–– Cross-cache line operations
–– Cache line false sharing (same cache line at the same granularity written by

two processors at the same time) and true sharing (same cache line at different
granularity written by two processors at the same time)

–– Write-back operations initiated by the cache coherent NoC

14.7  �Cadence® Interconnect Solution (Cadence-VIP n.d.)

The Cadence® Interconnect Solution is designed to meet the needs of verification
engineers and system architects by simplifying the verification of interconnect data
integrity and identifying performance bottlenecks before they are locked in silicon.
The solution includes the Cadence Interconnect Validator and Cadence Interconnect
Workbench.

14.7.1  �Cadence ® Interconnect Validator (Basic)

The Interconnect Validator (Basic) is used to verify non-coherent interconnect fab-
rics like ARM’s NIC-400 System IP. The solution:

•	 Supports any number of masters and slaves
•	 Accommodates independent address forwarding for each master
•	 Handles data splitting, upsizing, and downsizing
•	 Supports INCR, WRAP, and FIXED addressing modes
•	 Supports internal address ranges and unmapped access
•	 Supports transaction ordering
•	 Handles slave power-down, interconnect reset, and dynamic address forwarding

Interconnect Validator (Fig. 14.2) is a system-level VIP that serves as a system
scoreboard for interconnects. It’s a passive component that monitors each transac-
tion behavior within a fabric network and makes sure each transaction behaves cor-
rectly during different phases. It verifies the correctness and completeness of data as
it passes through the SoC interconnect fabric. Interconnect Validator automati-
cally(!) creates a coverage model of all transactions exchanged between masters and
slaves within an SoC. It includes a passive agent to monitor the SoC interconnect as
well as an active agent to model interconnect behavior and enable SoC verification
in cases where the interconnect design is not yet complete.

Theoretically, Interconnect Validator can work with any number of masters and
slaves within any number of layered interconnects, if it is correctly configured
regarding ID conversion, address mapping, port definition, etc. It can also handle
different kinds of protocol types and transaction types. The tool also has a powerful
application programming interface (API) that enables it to support proprietary
protocols.

14  SoC Interconnect Verification

281

F
ig

. 1
4.

2 
C

ad
en

ce
 I

nt
er

co
nn

ec
t V

al
id

at
or

 (
B

as
ic

—
no

n-
co

he
re

nt
)

14.7  Cadence® Interconnect Solution (Cadence-VIP n.d.)

282

14.7.2  �Cadence ® Interconnect Validator (Cache Coherent)

The Interconnect Validator (Coherent) is used to verify coherent interconnect fab-
rics like the ARM® CCI-400 System IP. The solution:

•	 Supports any number of outer and inner domains
•	 Verifies snoop conversions, snoop propagation, and snoop filter operation
•	 Checks cross-cache line operations
•	 Verifies barrier transactions
•	 Supports interconnect-initiated operations

14.7.3  �Cadence ® Interconnect Workbench

Your interconnect subsystem might be functionally correct, but are you starving
your IP blocks of the bandwidth they need? Is the data from latency-critical blocks
getting through on time? With the Cadence Interconnect Workbench (Fig. 14.3),
answering these questions becomes much easier. The solution collects cycle-
accurate traffic from multiple simulation runs and displays latency and bandwidth
measurements in an easy-to-use performance cockpit. Interconnect Workbench
saves time by generating testbenches. It imports interconnect fabric RTL and
IP-XACT metadata from the ARM CoreLink™ AMBA® Designer product, builds
either a performance-oriented testbench or a verification-oriented testbench, and
builds a basic test suite.

The tool uses cycle-accurate RTL for interconnect performance validation.
However, RTL is not needed for peripheral functions—nor is SystemC. Interconnect
Workbench can use highly abstracted traffic profiles, which generate traffic that is
not 100% real but is realistic enough for performance analysis. Real software is not
required. The use cases specified with traffic profiles on the ports of the interconnect
gives users enough information to optimize the performance of the system.

Its features include (product literature from Cadence—author has not validated
these claims!):

•	 Shaping of interface traffic with sequences to assess system performance under
various traffic loads

•	 Performance-sensitivity analysis to compare various implementation options and
quality-of-service configurations

14.8  �Synopsys Cache Coherent Subsystem Verification
Solution for Arteris Ncore Interconnect (NoC)

The Synopsys cache coherent NoC subsystem verification solution generates UVM
testbench logic that integrates with Arteris Ncore interconnect testbenches, enabling
connectivity of new subsystem level tests, monitors, coverage and performance

14  SoC Interconnect Verification

283

F
ig

. 1
4.

3 
C

ad
en

ce
 I

nt
er

co
nn

ec
t W

or
kb

en
ch

14.8 � Synopsys Cache Coherent Subsystem Verification Solution for Arteris…

284

tests, and analysis to achieve accelerated verification closure. The cache coherent
NoC interconnect subsystem solution includes subsystem level test suites to vali-
date the coherency of the system, in addition to the correctness of data flow across
the NoC. Synopsys’ Verdi® Performance Analyzer is natively integrated in the
cache coherent NoC subsystem verification solution for functional scenarios and
provides debug capabilities for performance issues across the SoC.

The author has not verified these claims from the vendor. Please take such claims
with a grain of salt.

14  SoC Interconnect Verification

285© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_15

Chapter 15
The Complete Product Design Life Cycle

Chapter Introduction
In parallel to the development of the verification environment as described in previ-
ous chapters, it is equally important to understand other development efforts in the
product development cycle. This chapter provides a glimpse into the hardware side
of the design and verification and to give the reader an overall view of the complete
product design life cycle of a product. Further details will be provided hereinafter.

I’d like to acknowledge Cuong Nguyen of EDA Direct, Inc. for contributing this
chapter in its entirety.

15.1  �Overview

In a typical product design and development flow, many engineering disciplines are
involved spanning from (but not limited to) electrical engineering, mechanical engi-
neering, and software engineering. The discussion here focuses on the electrical
engineering and the hardware design side of the product, but similar steps are appli-
cable to other areas.

Within the electrical engineering side, the HW group is responsible for the
design, development, and deliverable of the chip (i.e., an ASIC and/or FPGA), the
board (i.e., a CPU or graphic card), or the complete system. Each has its own
requirements and proceeds in parallel to other efforts. The design specification is
formed at the start to enable the implementation phase, and at the end, there is an
integration effort between all groups before heading into the product release phase.

Xilinx VCU108 development board is depicted in Fig. 15.1.
Let us look at this flow in more detail. It is important to note that each of the fol-

lowing flow is an involved process with many steps, and to go into the deep details
is beyond the scope of this book.

286

15.2  �Product Design and Development Flow

15.2.1  �Design Specification

Referring to Fig. 15.2, the process starts with an MRD (marketing requirement
document) or a PRD (product requirement document) that normally comes from
sales and marketing. It details the definitions and functional requirements the
product needs to have, to target a specific market time window, research data,
customer requests, as well as any driving factors for the new product (i.e., lower
cost, smaller form factor, lower power consumptions, etc.). Engineering then
creates the design specification which further details the deliverables that can be
expected from engineering. The deliverables can be at the chip level (i.e., ASIC
(application-specific integrated circuit), FPGA (field-programmable gate array),
or other electronic components)), at the board level (i.e., a CPU, graphic, or IO
boards, etc.), or at the “box” level as a complete product (i.e., a workstation,
tablet, Bluetooth headphone, etc.). The design specification describes pertinent
information of the system architecture of the product as well as the detail imple-
mentations consisting of the microarchitecture of the chip, block diagrams, and
bandwidth calculations. If the product is an ASIC, the specification can describe
the specific technology that will be used, gate count, packaging info, SPICE
simulation/modeling, etc. If the product uses FPGA(s), mechanical, thermal,
and verification requirements could also be specified here to drive subsequent
implementations.

HDMI Video
Output

USB-UART
Connector JTAG

Header
FMC1
(10xGTH)

FMC2
(10xGTH)

BPI Flash
Memory

Ethernet Port
(10/100/1000 Mb/s
Tri-Speed Ethernet)

RLDRAM3 72-bit
(2 x 36 Components)

DDR4 80-bit with ECC
(5 x 16 Components)

XCVU095-2FFVA2104E

User Clock
SMAs

QSFP28 Cage
(4x GTYs)

CFP2 Cage
(10x GTYs)

Samtec BullsEye Connector
Pads for 4 GTY Transceivers

USB-JTAG
Connector

PCle® Edge Connector
Gen3 x8
(8x GTHs)

Pmod Header

MicroSD Card Slot

PMBus Header

DDR4 80-bit with ECC
(5 x 16 Components)

Fig. 15.1  Xilinx VCU108 development board

15  The Complete Product Design Life Cycle

287

F
ig

. 1
5.

2 
Pr

od
uc

t d
es

ig
n

an
d

de
ve

lo
pm

en
t fl

ow

15.2  Product Design and Development Flow

288

15.3  �PCB (Printed Circuit Board) Design

The PCB contains the electronics, the mechanical components, as well as other ana-
log and/or RF (radio frequency) devices. Depending on the complexity of the system,
the PCB can have a small form factor (i.e., Bluetooth headphone) or a larger board
size within a computer, for instance. The PCB consists of layers and layers of materi-
als pressed together along with interconnecting metal traces to connect the compo-
nents mounted on board such as CPU, memory, switches, connectors, etc. Many
designs today are operating at high frequencies, and some design uses components
exceeding + pins which create complexities in the routing of these signals. This also
causes issues in terms of the electrical signaling and thermal dissipation. EDA ven-
dors such as Mentor Graphics, Cadence, and Altium, etc. all provide tools for the PCB
designers to address these design challenges. We will describe the main steps involved
in the PCB design flow. A typical PCB is a stack-up design as shown in Fig. 15.3.

15.3.1  �Schematic Design

Refer to Fig. 15.4. The key step driving the PCB design is the creation of the sche-
matic capture to represent the components being used and to show the interconnects
of these components. Different EDA vendors provide different capabilities to help
the designer do the schematic capture of the design. The design specification
describes the architecture and block diagrams of the board and specifies the main
components to be used in the schematic pages. The schematic capture process
involves creating or accessing the electronic symbols from libraries and then con-
nects them according to the function required. The schematic of a typical design can
contain a few to hundreds of pages to specify the complete connection of all the
components used. An example electronic schematic is shown below.

15.3.2  �Pre-layout Signal Integrity (SI), Power Integrity (PI),
and Thermal Integrity (TI) Simulation

Refer to Fig. 15.5. In selecting the final technology to implement on the board, often
the designers resort to doing simulation for signal quality, power delivery quality, and
even thermal simulation to make sure that the product meets all the requirements.
Signal integrity simulation is the process to simulate the electrical behaviors between
electronic components (i.e., between the CPU chip and memory chip) to ensure that
the voltage levels are met, the current driving is sufficient, and there is no extraneous
noise when the system is operating. In power integrity simulation, the designer looks
at how clean the power delivery subsystem is and if it’s able to deliver sufficient power
to these devices in times of busy switching activities. If not done properly, the compo-
nents may not operate reliably leading to system failures in the field. For thermal

15  The Complete Product Design Life Cycle

289

TOP

0.444 oz

0.444 oz

0.444 oz

0.444 oz

0.444 oz

0.444 oz

0.444 oz

0.889 oz

0.889 oz

0.444 oz

0.444 oz

0.444 oz

0.444 oz

0.444 oz

0.444 oz

0.444 oz

2.9 mils

3 mils

3 mils

3 mils

3 mils

3 mils

3 mils

3 mils

2.9 mils

2.5 mils

2.8 mils

4.1 mils

4.1 mils

4.1 mils

4.1 mils

DIE_002

DIE_004

DIE_006

DIE_008

DIE_010

DIE_012

DIE_014

DIE_016

DIE_018

DIE_020

DIE_022

DIE_024

DIE_026

DIE_028

DIE_030

BOTTOM

02_GND1

04_GND2

06_GND3

08_GND4

09_PWR1

10_PWR2

11_GND5

12_SIG4

13_GND6

15_GND7

14_SIG5

03_SIG1

05_SIG2

07_SIG3

Fig. 15.3  Stack-up design of a PCB

integrity, if there’s a requirement that the temperature of the operating product cannot
exceed certain level, there is a need to do thermal simulation and to explore different
cooling options which may be heat sinks, fans, or even placements of devices. The
resulting temperature simulations must meet the overall design criteria not only from
a thermal standpoint but also from the system cost as well as physical size.

If the results from the pre-layout SI, PI, and TI indicate potential issues, alternate
solutions need to be explored. In some cases, the alternate solutions may require
changes in the original design specifications, for instance, if the desire was to use a
single large FPGA in the design. However, simulation showed that there can be a
potentially high level of cross talk and thermal issues. This might require a change
in the partitioning into multiple FPGA devices and the microarchitecture of the
implementation.

15.3  PCB (Printed Circuit Board) Design

290

F
ig

. 1
5.

4 
Sc

he
m

at
ic

 c
ap

tu
re

 f
or

 a
n

H
D

M
I

15  The Complete Product Design Life Cycle

291

15.3.3  �Layout, Fabrication, and Assembly

Once the schematic is complete, the next step is to start the PCB layout process. In
this step, the schematic and symbol library files are used to map into the layout
libraries. This is to ensure that the correct footprints of the devices are used and the
connections specified from the schematic are valid. In this step, additional physical
constraints can be specified so that the electrical characteristics of these connections
are met. These constraints can include the lengths, widths, and heights of the traces,
the particular layer certain signal has to be in, placements of devices and connec-
tors, spacing of signals, etc. This is an involved process and may require multiple
iterations in order to meet the physical size constraints as well as meeting the elec-
trical and thermal requirements. Once a board is “routed,” the board can be simu-
lated again (described in the next section) before going to the fabrication and
assembly process. In this step, the necessary files are generated (i.e., Gerber files) as
well as the BOM (bill of material) file that specifies the manufacture PN, quantity,
costs, etc. This step can also trigger the manufacturing process if the design will
have a high volume in production (or if it’s just a prototype board), and additional
DFMA (design for manufacturing and assembly) steps are required. The PCB is
now ready to be built along with all the electronic components installed in the
assembly process which is usually done by external vendors.

Fig. 15.5  Signal integrity simulation for pre- and post-layout

15.3  PCB (Printed Circuit Board) Design

292

15.3.4  �Post-layout Signal Integrity (SI), Power Integrity (PI),
and Thermal Integrity (TI) Simulation

Refer to Fig. 15.6. Once the board is routed, it is necessary to do a post-layout simula-
tion to validate the final implementation of the PCB. The process here is the same as
in the pre-layout phase. The difference is that now that the board has been completely
routed, all the physical structures are in place (i.e., exact trace lengths, widths, heights,
number of layers, number of vias, spacing of traces and devices, etc.). Thus, the elec-
trical (and thermal) behaviors are more accurate. This is the chance to predict and find
any potential issues before the board is built to start the bench bring-up. Normally,
issues relating to high-speed interfaces (i.e., DDR4, PCIe, 10Gbps ENET, etc.) and
EMI (electromagnetic interference) violations are found here. Boards that pass func-
tional test but fail EMI checks will have to be redesigned which can be an expensive
procedure that can be avoided if simulation is done before built.

15.3.5  �Hardware Bring-Up and Debug

When the board has been assembled with all the electronic components, the process
of hardware debug and bring-up begins. While not explicitly mentioned, it is impor-
tant to note that this is the stage where everything comes together from chip design,
verification, as well as mechanical design. It is also the first phase of system soft-
ware integration. To assist the hardware bring-up team, the software team creates a
scaled-down “image” of the system software to enable the hardware designer to
verify functionality of both internal logic and external system interfaces. Hardware
characterization will take place which involves measuring signal quality, capturing
data, validating external interface (i.e., disk drives, backplanes, other IOs, etc.). The
software team and the hardware team work closely together to validate that the
functionality of the board is met. Issues in both HW and SW could surface at this
stage, and within the constraints of the design implementation, these issues can be
fixed in HW and/or can be mitigated with SW solutions. If major issues are found
from bring-up, a re-layout may be necessary (if the issues are related to the board
fabrication), a redesign of the chip may be necessary, and the process repeats.

FPGA designers can also take advantage of debugging internal digital logic
blocks and examine internal signals on the board by using ChipScope (for Xilinx) or
SignalTap (for Altera) via the JTAG (Joint Test Action Group) port built on the PCB
which is also used to test connectivity of all electronic components on the board.

System-level debugging (Fig. 15.7) may require additional instruments to gener-
ate stimulus and capture responses from the board. Such equipment may include
network analyzer, USB 3.0 traffic generator/analyzer, and others.

Once the basic bring-up milestone is reached and if no major issues are found,
additional boards may be built to enable the SW team to fully test the system soft-
ware. On the HW side, additional boards may go through the process of extended
temperature testing, some boards may be early delivered to customers for their own
testing, and the process of manufacturing begins.

15  The Complete Product Design Life Cycle

293

F
ig

. 1
5.

6 
T

he
rm

al
 s

im
ul

at
io

n

15.3  PCB (Printed Circuit Board) Design

294

15.4  �ASIC/FPGA Design

From the design specification and architecture of the system, the microarchitecture
of the chip design is formulated to drive the ASIC/FPGA implementation. This can
involve partitioning the design into multiple chips, and each chip goes through the
design flow as described in the following sections.

15.4.1  �HDL Design

HDL (hardware description language) refers to the specialized computer language
that designers used to describe the structure and behavior of electronic circuits. The
language mostly describes digital logic circuits although some variations of the lan-
guage can be used for analog circuit design. Verilog and VHDL are the common
languages used for many years, but other languages are becoming more common-
place to address the shortcomings of the original language. These include
SystemVerilog, SystemC, PSL, SVA, C++, etc. The main benefit of doing HDL
design is that the design can be written at a higher level to model certain functional-
ity of a complex block, or it can be implemented at the very low hardware level (if
the designer wants to optimize certain technology from the vendor to maximize the
performance). In addition, the HDL designs allow easy changes for easy migration
and portability across many implementation environments. It is important to note
that the HDL language can mimic the behavior of digital logic without the need to
implement the final logic in gates. This is often referred to as behavioral design and
is commonly used to describe the behavior of a functional block at a high level (i.e.,
a disk drive’s behavior). HDL designs that have synthesizable constructs are referred
to as RTL (register transfer level) designs when these structures can be synthesized
into digital logic and gates in an FPGA, for instance.

Fig. 15.7  Network analyzer for system debug

15  The Complete Product Design Life Cycle

295

15.4.2  �Pre-synthesis Simulation

The HDL code that is written at this stage often is not necessarily optimized for
performance and can be a mixture of behavioral as well as structural (i.e., RTL). The
code(s) can be used in simulation to validate the functional behaviors between dif-
ferent design blocks. A module-level testbench can be built around the block being
designed, and basic stimulus and checking can be performed. As these sub building
blocks are being designed and integrated together, there can be many other unfin-
ished blocks (which will have placeholders) as well as assumptions for protocol
conditions (which may or may not be supported in the end design). However, this
gives the designer a good glimpse into the behavior of how the block being designed
will interact with other blocks once the chip design is complete.

Another benefit of doing pre-synthesis simulation is to help drive the verification
group in developing the final verification environment.

15.4.3  �Post-synthesis/Place and Route Simulation, Timing
Closure

Once a large part of the functionality of the design has been verified in the pre-
synthesis simulation, the next step is to take the design through physical implemen-
tation and validate the synthesized design with timing closure. The RTL design is
now represented as digital logic gates in the technology chosen (i.e., for a particular
ASIC process node or a particular FPGA device). Depending on the complexity and
size of the design, it may or may not route completely in the chip chosen. Even
when routed completely, the interconnecting delays may exceed the timing margins
budgeted (i.e., the internal trace is too long which exhibited timing delay not meet-
ing setup or hold time). If this is the case, a rewrite of the RTL code may be neces-
sary to redesign the block (i.e., break up a 64-bit counter into eight 8-bit counters),
insert pipeline registers, redistribute the combinational logic across registers, use
built-in hardware IP (intellectual property) blocks, or even adjust clock timing, etc.
These have to be done to ensure that the design can run at the targeted frequencies
in order to not impact the system bandwidth requirements. The previous step is
referred to as doing timing closure. Once timing closure is achieved, re-simulating
the post-synthesized block may be necessary to ensure that no tests fail.

Note that doing simulation for post-synthesized netlist may be a lot longer (i.e., can
be >> 10X) due to modeling each delay at each switching point, so running simulation
with full back-annotated timing is often skipped. Or the back-annotated netlist can be
used to simulate the power-on reset logic. If there are bugs due to logic that does not
reset, they will be caught at this step (e.g., incorrectly identified false paths or multi-
cycle paths). No other tests need to be run. One can consider running gate simulation
with unit delay (i.e., the delay through all the combination switching points and rout-
ing delay using one unit time) to minimize the impact in simulation time.

15.4  ASIC/FPGA Design

296

In general, designers opted to run functional simulation using pre-synthesized
netlist and to do a full STA (static timing analysis) in post-routed netlist. This is a
widely adopted methodology to minimize debug time and maximize the logic
verification.

15.4.4  �Integration

In the ASIC/FPGA integration phase, all the design codes are merged into one
single design structure. This includes all the IO pin definitions/assignments as
well as all the RTL codes for all the modules (whether organized as a flat structure
or a hierarchical structure). The RTL code can contain codes written by the
designer and/or instantiations of hardware blocks inside the chip (i.e., an Ethernet
MAC or PCIe block). In some designs, where prototyping is done in an FPGA but
the final design is implemented as an ASIC, it is in the integration phase where the
two (potential different) code streams are merged and selected in some way. For
instance, assuming that the code stream is the same for the core logic and that
between the ASIC and FPGA implementation the only differences are in the IO
structures (i.e., pin assignments and signaling), clocks (i.e., PLL vs. DLL), and
memory (i.e., RAMs, ROMs, single-/dual-ported memories), a selection mecha-
nism needs to be implemented to ease the full ASIC flow or the FPGA flow if so
desired in synthesis, place and route, clock trees, etc.

This stage also ties into the PCB HW debug in terms of electrical connectivity,
signaling, power, and debug facilities.

15.5  �Verification

Previous chapters have focused on the verification flow in much more details. The
discussion on the verification flow in this section centers around how this fits within
the context of product design life cycle.

The verification process can start very early, even before the system design speci-
fication is formed, and continues even when the product is shipped. The role of verifi-
cation is very crucial in the design process. It should not be looked at as an engagement
after the design is done, but it should be looked at as something that drives how the
design is done. It is almost like saying “If you can’t verify it, don’t design it!”

15.5.1  �Test Plan Specification

The key starter in the verification flow is the formation of the test plan from the
design specification. The test plan highlights the features of the design and describes
in detail how each of the function will be tested, which environment will be tested,

15  The Complete Product Design Life Cycle

297

and how results are measured against a passing or failing criteria. From the main
test plan, subsequent test plans may be created for certain part in the design (i.e., an
FPGA), indoor/outdoor environment, or even compliance testing at the system
interoperability level.

15.5.2  �Testbench and Test Program Development

The term “testbench” (Fig. 15.8) loosely defines an environment where the device
under test (DUT) is instrumented along with other blocks to either provide the stim-
ulus and/or to measure the response to/from the DUT. The components included in
the testbench can include high-level programs written in C, C++, etc. to behavioral
HDL blocks for components and can even include real hardware in the loop to help
speed up testing of the communication between the DUT and the real world.

Test programs can then be developed to enable these blocks to generate stimulus
into or out of the DUT. Depending on the environment, the test program can be writ-
ten using one or multiple languages in combination thereof. Once the tests are
developed, they can run sequentially in a deterministic behavior or can be dynamic
with randomly chosen behavior and stimulus.

Fig. 15.8  Testbench development

15.5  Verification

298

15.5.3  �Functional Test

Refer to Fig. 15.9. Functional tests are written to validate the behavior of the RTL
design strictly from pure logic standpoint without any timing delay dependencies
coming from synthesis as well as place and route. Functional tests are quicker to run
since the design, being described at a higher level of abstraction, does not incur the
penalty of logic, timing, and even routing delay computations which, for a large
design, can significantly slow down the overall simulation. For instance, for some
design that has internal processor (i.e., ARM core), the processor block is replaced
with a C++ (or SystemC) model which has the cycle-accurate behavior to greatly
simulate the reads/writes to/from the processor without having to deal with the real
gates that were used to implement the processor.

15.5.4  �Gate-Level Verification

Once the RTL is synthesized into gates and for certain ASIC technology node or a
particular FPGA family, the gate netlist can be substituted for the RTL DUT, and the
testbench is used to run the gate-level tests.

One question that arises all the time is if we have done functional verification and
static timing analysis, and synthesis is guaranteed to work, what’s the need for gate-
level simulation? For ASIC design and after clock tree and test insertions, the origi-
nal functional netlist will change. This would require some degree of gate-level
testing to validate these changes and insertions. Read on.

Fig. 15.9  Functional simulation

15  The Complete Product Design Life Cycle

299

15.5.4.1  �Unit Delay Synthesized Gate Simulation Without Standard
Delay File Timing Annotation

There are two types of gate-level simulation. The first type is synthesized gate simu-
lation where the nets of the design have no delays. This type of gate-level simulation
should be done using library cells with “unit” delay and without timing annotation
using SDF. This unit delay simulation does not need to run the full set of RTL func-
tional tests. That is simply too slow and impractical and there is no return on invest-
ment (ROI). Its utility is in running power-on reset (POR) simulation. This
simulation will find if any of the state elements are not resettable and are causing
unknowns (X) to proliferate in design. Note that RTL may be resettable but gate
may not be because, for example, there could be mismatch in the way RTL code was
synthesized (no “default” statement in a “case” statement). Hence, the unit delay
gate-level simulation is a good sanity check verification of power-on reset logic.

15.5.4.2  �Post-synthesis Gate Simulation with SDF Timing Annotation

The other type of gate-level simulation is post-layout timing-based simulation using
the post-layout delays in the standard delay file (SDF). The gate netlist now has tim-
ing delays from the logic gates as well as net timing delays from internal routing of
the chip. Here also, you need to undertake the power-on reset (POR) simulation. In
addition to making sure that all state elements are resettable, there are other advan-
tages. The simulation with SDF annotation will show any timing violations that may
exist in the netlist. Why would you have timing violations if you have already done
static timing analysis? The main reason could be that the designer incorrectly identi-
fied multi-cycle timing paths or false timing paths. In other words, static timing will
exclude multi-cycle paths, but SDF-annotated simulation will catch incorrect multi-
cycle paths.

In addition to POR simulation, you should also run the critical path (longest path)
simulation. If you see timing violations during simulation, that could be again because
of incorrect identification (during static analysis) of false or multi-cycle paths.

This is not so much a requirement for FPGA designs as FPGA resources already
have tests and scans built in the timing model, and there are no additional penalties
from the clock tree implementation.

15.5.5  �Functional/Gate Regression

In this regression environment, both the functional tests and gate-level tests are
combined and run to test the design. At this stage, both directed tests and con-
strained random tests are run to exercise the full design. For RTL simulation, for
smaller designs, the number of tests can be in the hundreds, but on larger designs
(i.e., a CPU), these tests can be in the thousands, even indefinite if random

15.5  Verification

300

constraints are used. Often, a server farm is used where hundreds and even thou-
sands of workstations are used to run multiple images of the testbench in complete
random order, and the results can be staggering when running 24×7. When issues
are found, the failing data will be fed back to the designers, and appropriate actions
are taken which may involve the fixes and redesign of the particular logic section in
the chip and even the PCB designs. Gate simulation with such large set of vectors is
impractical. So, use power-on reset and longest path simulation at gate level.

15.6  �Emulation

The subject of using emulation as part of the hardware/software co-simulation is
discussed in details in Chap. 12. This section highlights the emulation flow in the
context of complete product design life cycle.

As the testbench is being developed and tests are written, there might be a sce-
nario where running tests with simulators take too long to progress from one stage
to another. This is more so true in designs where there are a lot of mathematical
computations required (as in implementing certain DSP algorithm). In these cases,
alternate methods need to be implemented to speed up the testing. This can be done
in one of two options: either have some hardware in the loop or to port either the
whole or partial design in an emulator.

The emulation flow ties in closely with the ASIC/FPGA pre-synthesis simulation
and the testbench/test program development in the verification flow. The RTL codes
that are written by the ASIC/FPGA designers can be brought over to the emulation
environment, and it is here that these codes are subjected to another partitioning,
synthesis, and place and route using the logic resources inside the emulator box.
The emulation box can be used to mimic the chip being designed or in many cases
used in conjunction with the full system software to emulate the real software sys-
tem in hardware. Note that emulation boxes cannot necessarily run at the full speed
of the real system (as is the case for new hardware features in devices that have not
made it inside the emulation box). In those situations, a scaled-down speed version
of the system can be implemented to support the full software testing.

15  The Complete Product Design Life Cycle

http://dx.doi.org/10.1007/978-3-319-59418-7_12

301© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_16

Chapter 16
Voice Over IP (VoIP) Network SoC
Verification

Chapter Introduction
This chapter discusses, in detail, the verification of a complex SoC, namely, a voice
over IP Network SoC. We will go through a comprehensive verification plan and
describe each verification step with VoIP SoC-based real-life detail.

16.1  �Voice Over IP (VoIP) Network SoC

Having discussed many different aspects of design verification, let us now dive into
real-world SoC verification. We will use the SoC shown in Fig. 16.1. The figure
shows a simplified version of a voice over IP (VoIP) network SoC. It has two embed-
ded ARM processors: one for transmit and one for receive. It has PCI, TDM (for
voice), and Ethernet Tx/Rx MAC port. It has internal DMA to route packets from
Ethernet to TDM (packet to voice) and TDM to Ethernet (voice to packet). A CAM
acts as a lookup table for packet to voice or voice to packet transmission.

The first step in any verification project is to create a verification plan. Let us
formulate a verification plan for this SoC. This plan will also serve as the execution
plan for the rest of the duration of the project and identify upfront the expertise and
tools required for this project. It will also identify the compute resources and physi-
cal memory (as well as disk storage) requirements.

16.2  �VoIP Network SoC Verification Plan

Here is a comprehensive verification plan to verify the network (VoIP) SoC. This is
a high-level view of what needs to go into a verification plan. Each subsequent sec-
tion will provide detailed verification plan of each step.

302

	 1.	 Identify subsystems within your SoC.
	 2.	 Determine subsystem stimulus and response methodology.
	 3.	 SoC interconnect verification.
	 4.	 Low-power verification.
	 5.	 Static formal or static + simulation hybrid.
	 6.	 Assertions methodology (SVA).
	 7.	 Coverage methodology (functional—SFC, code, and SVA “cover”).
	 8.	 Software/hardware co-verification.
	 9.	 Simulation regressions: hardware acceleration or emulation or FPGA

prototyping.
	10.	 ESL—virtual platform for software and test development.

16.3  �Identify Subsystems Within VoIP Network SoC

A subsystem is one which has clearly defined inputs for stimulus and outputs for
response checking. In the SoC of Fig. 16.1, we can identify the following subsystems:

•	 Ethernet subsystem. Ethernet MAC to Layer4 processing subsystem. The MAC
(Ethernet) layer receives voice packets over the Ethernet and processes its pay-
load’s (e.g., IPV4) Layer 2, Layer 3, and Layer 4. And once done with Layer 4
processing, it will hand over the packet to the ARM Rx processor. So, this is a
subsystem in that there is a clear input and a clear output.

Fig. 16.1  Voice over IP (VoIP) SoC verification

16  Voice Over IP (VoIP) Network SoC Verification

303

•	 TDM subsystem. Voice comes over the TDM interface and DMA it over to the
ARM Rx CPU. ARM searches CAM for voice to packet translation and hands
over the packet directly over to Ethernet Tx Logic. Hence, this is a subsystem
with a clear input and output points in the logic.

•	 PCI subsystem. PCI subsystem is to program the register space of the SoC
(among other functions). So, you can write and read registers from PCI. Hence,
this is a closed-loop subsystem.

•	 ARM subsystem(s). ARM processes the incoming “packet” and the incoming
“voice” and converts one from the other. It also boots the system. So, we have
Ethernet packet as input and voice as output and voice as input and Ethernet as
output. So, in essence, there are two subsystems within the ARM subsystem
because for voice to packet, you have a set of voice inputs and packet outputs,
and for packet to voice, you have the Ethernet stack as input and voice as output.
This can be called “internal” processing subsystems (as opposed to the periph-
eral processing subsystems identified above).

•	 Memory subsystem. Write (or DMA) and read from the external DDR. Verify
the dynamic DDR controller (DDRC), ARM interface, etc.

16.4  �Determine Subsystem Stimulus and Response
Methodology

•	 Ethernet Subsystem

–– Stimulus

Stimulus required is Ethernet packet generation software and algorithms.
Also, an Ethernet MAC transmit/receive UVM agent. The UVM agent will
read in the generated Ethernet packets from a golden packet generator (or
a software stack) and transmit those to the MAC controller of the SoC. The
SoC will process the received packets for L1/L2/L3/L4 layer processing.

–– Response

There will be a UVM monitor to track the packets as they go through the L1,
L2, L3, and L4 processing hardware. At each stage of layer processing, the
UVM monitor will compare a golden L1, L2, L3, and L4 processed packet
with its corresponding hardware-processed packet. Any discrepancy will
be reported to an analysis port for further processing and error reporting.

Check to see that error packets do get dropped but the clean packets do get
processed.

•	 TDM Subsystem

–– Stimulus

In a TDM bus, data or information arriving from an input line is put onto
specific time slots on a high-speed bus, where a recipient would listen to

16.4 � Determine Subsystem Stimulus and Response Methodology

304

the bus and pick out only the signals from a certain time slot. The stimulus
needs to be provided to comprehensively verify all time slots in all combi-
nations that would be input to the TDM bus. A matrix needs to be created
and read in from a file by a UVM–TDM agent.

Send all different types of TDM “frames,” and check their response for time–
division multiplexing operation.

–– Response

Create a reference model for the time slot matrix and predict the signals to be
picked up from certain time slots. Use this reference model in the UVM
scoreboard connected to UVM monitor via analysis port.

Create a golden reference for expected frames and compare with incoming
frames. Use UVM scoreboard.

•	 PCI Subsystem

–– Stimulus

Using UVM master agent; simulate the entire PCI master compliance and
target compliance test suite with SoC as the master (i.e., UVM agent as
target) followed by SoC as the target and UVM agent as the master.
Carefully check for SoC boot after programming PCI Config space for
SoC as target from UVM master agent.

Run all error scenarios singularly first and then induce collision on them. For
example, SoC issues a master abort on a transaction and target issues a
target abort in the very next transaction. Similarly, transaction retry from
both master and target in consecutive cycles.

Verify entire register space using UVM register verification methodology.
Check for initial values (after reset) of register bits. Write to Read-only bits
and see that the write value does not get written.

–– Response

Use external UVM agent as a PCI target (for SoC as master).
Monitor master/target transactions and send those through analysis port to a

scoreboard. The scoreboard maintains golden transmit values which are
compared with received values (e.g., register write/read).

Scoreboard also maintains the entire PCI compliance suite results for golden
comparison.

•	 ARM Subsystem

–– Stimulus

Replace the full ARM CPU core model with an ARM AXI UVM agent. For
verification purposes, you don’t need the full ARM CPU model since you
are not verifying software through the processor. For hardware verifica-
tion, you need a Bus Functional Model (i.e., an UVM agent) to drive
directed and constrained random writes/reads/interrupts to all “targets” of
the ARM AXI bus. These BFMs are shown in Fig. 16.1.

16  Voice Over IP (VoIP) Network SoC Verification

305

To run a simple software boot sequence, you will need the full ARM CPU
model. This is shown in the bottom left corner of Fig. 16.1. The compiled
software code needs to be loaded in the external DDR. The SoC needs to
be reset and program counter should point to the code in the DDR. After
this, ARM CPU will fetch instructions from the DDR and execute.

–– Response

The UVM agent BFM will monitor the bus activity and send the received read
transactions to an external scoreboard through the analysis port. The exter-
nal scoreboard will have a small memory where the write transactions are
stored (i.e., write address, ID, and data). When read returns data, the score-
board will compare it with the write data that it had stored. The memory
where golden write data is stored is shared by both the scoreboard and the
sequences so that the data that scoreboard uses as golden is the same data
that were sent to PCI, for example, by a sequence.

Check the state of SoC after boot to make sure boot succeeded. The full ARM
CPU model accomplishes this. It will compare the state of SoC with the
expected state after boot. This is the only time full ARM CPU model is
needed.

•	 Memory Subsystem

–– Stimulus

First, direct set of tests to drive to DDR covering all different types of protocol
(e.g., burst, non-burst, interleaved, etc.). See that DDRC survives the
directed tests.

Second, constrain the stimulus to DDR bank crossing boundary and see that
operations such as word crossing and word wrap around work correctly.

Third, turn ON the DMA as well as ARM UVM agent BFM and simultane-
ously blast DDRC with writes and reads.

–– Response

Each write from ARM BFM or the DMA will store that write with an
ID. When read takes place from the same address and ID, compare write
data with read data. These are simple tests but very effective at testing
DDRC operations.

Measure read latencies through DDRC and DDR and report to make sure they
meet the architectural requirements.

16.5  �SoC Interconnect Verification

This is a topic in itself and covered in its entirety in Chap. 13.1.

16.5 � SoC Interconnect Verification

http://dx.doi.org/10.1007/978-3-319-59418-7_13

306

16.6  �Low-Power Verification

Low-power verification with UPF is discussed in detail in Chap. 9.
For the network SoC verification, the methodology with UPF is directly appli-

cable based on the following power domains and the Power State Table defined.

•	 Power subdomains for SoC in Fig. 16.1

–– ARM
–– Ethernet packet processing block
–– TDM voice processing block
–– PCI subsystem
–– Memory subsystem

•	 Power State Table for the network SoC (Fig. 16.2)

16.7  �Static Formal or Static + Simulation Hybrid
Methodology

This topic is covered in its entirety in Chap. 10.
As noted in Chap. 10, static formal (aka static functional) works only on small

blocks of logic (a few hundred gates). From that point of view, we identify the fol-
lowing blocks for static formal.

•	 Based on Fig. 16.1, apply static formal to:

–– SoC synchronous and asynchronous FIFOs
–– A single processing layer (L1 or L2 or L3 or L4) at a time with “assumed”

stimulus using hybrid methodology
–– Standalone CAM operation
–– Standalone DMA operation
–– DDRC refresh logic
–– Interconnect bridges (e.g., AXI ⇔ AHB, AHB ⇔ APB, etc.)

State \ Power
Domain

ARM_PD Eth_PD TDM_PD PCI_PD Mem_PD

ON_10

OFF

OFF

ON_08

OFF

OFF

ON_08

ON_08

OFF

ON_05

ON_05

OFF

ON_10

ON_10

ON_10

Normal

Sleep

Hibernate

Fig. 16.2  Power State Table for network SoC

16  Voice Over IP (VoIP) Network SoC Verification

http://dx.doi.org/10.1007/978-3-319-59418-7_9
http://dx.doi.org/10.1007/978-3-319-59418-7_10
http://dx.doi.org/10.1007/978-3-319-59418-7_10

307

16.8  �Assertion Methodology

This topic is covered in its entirety in Chap. 6.
Applying the SVA methodology to the network SoC shown in Fig. 16.1, we need

to apply assertions on the following interfaces and modules.

•	 Apply SystemVerilog assertions to:

–– PCI initiator/target protocol interface
–– Ethernet transmit/receive protocol interface
–– Internal AXI, AHB, APB bus protocol interface
–– Layer processing handoff (from one stage to another) interface
–– DDRC to DDR protocol interface
–– TDM protocol interface
–– All SoC internal FIFOs
–– Misc. FIFOs as part of RTL development (i.e., microarchitecture level

assertions)

16.9  �Functional Coverage

This topic is covered in its entirety in Chap. 7.
Before we apply functional coverpoints to the network SoC (Fig. 16.1),

•	 Determine logic that needs to be functionally covered.
•	 How will you leverage code coverage with SystemVerilog functional coverage?
•	 What’s the strategy to constrain stimulus to achieve desired functional

coverage?
•	 How will you determine that you have specified all required coverpoints and

covergroups? This is the hardest (and sometime subjective) question to answer.
Continue to strategize as the project progresses.

The functional coverpoints (including transition and cross coverpoints) need to
be applied to the following blocks:

•	 PCI initiator/target protocol interface
•	 Ethernet transmit/receive protocol interface
•	 Internal AXI, AHB, APB bus protocol interface
•	 Layer processing handoff (from one stage to another) interface
•	 DDRC to DDR protocol interface
•	 TDM protocol interface
•	 PCI, TDM, CAM, DMA, DDRC internal functional coverpoints (e.g., state tran-

sitions. Note that states will be covered by code coverage but not the state transi-
tions). ARM is considered a pre-verified IP and hence no coverpoints are needed
for it.

16.9 � Functional Coverage

http://dx.doi.org/10.1007/978-3-319-59418-7_6
http://dx.doi.org/10.1007/978-3-319-59418-7_7

308

16.10  �Software/Hardware Co-verification

This topic is covered in its entirety in Chap. 12.
Think about deploying advanced methodologies such as TLM2.0 (ESL) ⇔ emu-

lation or acceleration. This allows you to speed up software running on the
SoC. Deploy TLM2.0 models for blocks that are not under verification. TLM2.0 is
transaction level and so is UVM. So, integration will not have significant challenges.
You will be able to run small pieces of software code with such methodology.

The software that needs to be developed for the VoIP SoC (Fig. 16.1) can be
categorized as follows:

•	 Driver software for Ethernet and PCI subsystems
•	 Boot software for SoC
•	 PCI configuration software
•	 Ethernet transmit logic
•	 Ethernet receive logic
•	 SoC programmable register initial value (from reset) programming
•	 DMA programming

16.11  �Simulation Regressions: Hardware Acceleration or
Emulation or FPGA Prototyping

This subject is covered in detail in Chap. 12.

•	 Determine the requirements for software development. How early should the
software development start for it to be ready when hardware RTL is ready. This
is the key question that needs to be answered before deciding on whether to
deploy acceleration or emulation.

•	 Acceleration, emulation, and prototyping all need RTL to be ready in some shape
and form. That is an issue because software development needs to start before
RTL is ready. See the next section on virtual prototyping.

•	 If you do decide to go with simulation acceleration tools/methodology, further
ponder over following differences among tools and technologies.

•	 Acceleration will have better debug capabilities than emulation.

–– But the speed may be in a few MHz at best.
–– Does acceleration provide enough speed for software development?
–– If the testbench is still in SystemVerilog (i.e., outside the acceleration box),

will the SystemVerilog ⇔ acceleration maintain the required speed? Will
SCE-MI-II help?

–– Will acceleration work at transaction level with UVM testbench?
–– What about memories? What about multiple clocks? What is the debug

strategy?
–– How about assertions? Will they compile into acceleration hardware?

16  Voice Over IP (VoIP) Network SoC Verification

http://dx.doi.org/10.1007/978-3-319-59418-7_12
http://dx.doi.org/10.1007/978-3-319-59418-7_12

309

–– How will functional coverage be measured?
–– And finally, as mentioned above, acceleration requires a working RTL so that

software development can take place. Without a working RTL, you will spend
more time debugging hardware and less time developing software.

•	 Emulation will be orders of magnitude faster than acceleration.

–– But emulation cannot start until RTL is ready. That being the case, will it be
too late for software development?

–– How easy/hard will it be to debug since internal node visibility may be poor?
–– What about assertions and functional coverpoints?

16.12  �Virtual Platform

This topic is covered in detail in Chap. 11.
In the author’s opinion, this is the preferred methodology and wave of the future.

In other words, one can start a virtual platform development in parallel (or preced-
ing) RTL development. Here are the high-level advantages of a virtual platform. It
is highly recommended that a virtual platform be developed for the VoIP network
SoC (Fig. 16.1).

•	 Virtual platform development requires only the architectural specifications and
has no dependency on RTL development. This reason alone allows you to
develop the virtual platform and keep ready for software development, way
before RTL is ready.

•	 Virtual platform speeds are at par (or even faster) than an emulated or prototyped
SoC. Virtual platforms operate in hundreds of MIPS. As an example, a bare bone
virtual platform (Fig. 11.6) will boot a paired down Linux in less than five wall
clock seconds.

•	 The virtual platform methodology is the industry standard ESL/TLM2.0
methodology.

•	 You will develop software before the RTL is ready.
•	 You will create and verify tests before the RTL is ready.
•	 The virtual platform acts as a reference model and will be needed for the

following:

–– Match the architectural state of the SoC with that of VP at transaction
boundaries.

–– Ethernet layer processing will be verified using the Ethernet subsystem of the
virtual platform as a reference model (accessed via UVM scoreboard).

–– TDM crossbar switch and time slot selection logic will need a reference
model. This will be part of the virtual platform and available as a reference
model toward verification of TDM.

End-to-end packet and voice processing will need a reference model to verify
correct translation of voice to packet and packet to voice.

16.12 � Virtual Platform

http://dx.doi.org/10.1007/978-3-319-59418-7_11
http://dx.doi.org/10.1007/978-3-319-59418-7_11

311© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_17

Chapter 17
Cache Memory Subsystem Verification:
UVM Agent Based

Chapter Introduction
This chapter discusses, in detail, verification of a cache subsystem of a large
SoC. We will go through a comprehensive verification plan and describe, at each
verification step, cache subsystem-based real-life detail. This chapter discusses the
verification methodology using an UVM agent (as opposed to using an instruction
set simulator (ISS) which is discussed in the next chapter).

17.1  �Cache Subsystem

This design is a subset of a much larger multimedia SoC. As in the VoIP network
SoC, this is a real project that was successfully verified using the environment
shown in Fig. 17.1. It is a dual-processor system. CPU_A and CPU_B have their
own internal L1 cache. These processors interact with a second-level write back
cache L2. The internal bus can be an AXI (for high performance) or a proprietary
bus. L2 cache in turn talks to an external memory (not shown) through the AXI bus.

The intent of the verification of this subsystem is to verify the L1 and L2 interac-
tion for write back MESI protocol. The interaction gets complicated because, for
example, both the processors could be writing and reading from L2 at the same time.
They could be accessing the same L2 line but at different byte granularity. This means
we must have transactions going concurrently from both CPUs. In addition, the AXI
bus can snoop into L2 for a coherent AXI bus transaction. So, even AXI needs to run
concurrently with both the CPUs. All three subsystems need to run concurrently to
verify L2 write back MESI protocol along with L1 write through protocol.

As we saw for the network (VoIP) SoC verification, I am reiterating the steps
needed to verify the cache memory subsystem (Fig. 17.1):

•	 Identify subsystems within your SoC.
•	 Determine subsystem stimulus and response methodology.
•	 SoC interconnect verification.

312

•	 Low-power verification.
•	 Static formal or static + simulation hybrid.
•	 Assertion methodology (SVA).
•	 Coverage methodology (functional—SFC, code, and SVA “cover”).
•	 Software/hardware co-verification.
•	 Simulation regressions: hardware acceleration or emulation or FPGA

prototyping.
•	 ESL—virtual platform for software and test development

17.2  �Identify Subsystems Within the Cache Subsystem

In the cache memory subsystem of Fig. 17.1, we can identify the following
subsystems:

•	 CPU_A ⇔ L1 Cache ⇔ L2 Cache:

–– Let CPU_B be idle. CPU_A will write/read from L1 (write through) which in
turn will get data from L2 (write back) or external memory. The intent is to
verify that for all possible MESI transactions from CPU_A/L1 to L2 and the
L2 to AXI that L2 adheres to the MESI protocol.

Fig. 17.1  Cache subsystem verification using UVM agents

17  Cache Memory Subsystem Verification: UVM Agent Based

313

•	 CPU_B ⇔ L1 Cache ⇔ L2 Cache:

–– Let CPU_A be idle. CPU_B will write/read from L1 (write through) which in
turn will get data from L2 (write back) or external memory. The intent is to
verify that for all possible MESI transactions from CPU_B/L1 to L2 and L2
to AXI that L2 adheres to the MESI protocol.

•	 CPU_A && CPU_B Concurrent ⇔ L1 Cache ⇔ L2 Cache:

–– Both CPU_A and CPU_B are active. Both write and read from L1 and L2 are
constrained randomly; meaning they could be writing/reading one at a time
and concurrently. Verify that when both are writing and reading, a single
cache line can be accessed concurrently for both false sharing (same cache
line and same byte in the cache line) and true sharing (same cache line but
different bytes in the cache line). Many such scenarios need to be considered
for MESI write back operation.

•	 CPU_A, CPU_B ⇔ L1 ⇔ L2 ⇔ AXIM/AXIS:

–– This is the mother of all verification for this subsystem. Both CPUs concur-
rently communicate with L1⇔L2, and the external interconnect (memory or
other devices) communicates with AXIM and AXIS at the same time through
L2 cache snoops.

17.3  �Determine Subsystem Stimulus and Response
Methodology

Based on above subsystems, let us see what kind of stimulus and response strategy
we should deploy.

	1.	 CPU_A ⇔ L1 Cache ⇔ L2 Cache:

•	 Stimulus (high level only):

–– UVM agent for CPU_A. Scoreboard for CPU_A
–– Sequences created for the following:

Idle CPU_B. No snoops from CPU_B
Writes/reads from CPU_A to L1 to L2
Cache write invalidations and other cacheable instructions
Final cache block flush to flush out entire L1 and L2 cache to the main

memory through AXI

•	 Response

–– A reference model for the memory subsystem that simple writes/reads
from the main memory. All writes/reads from CPU_A end up in main
memory of the reference model.

17.3  Determine Subsystem Stimulus and Response Methodology

314

–– After cache block flush, the RTL memory image should be the same as the
memory image produced by the reference model.

–– Reference model is connected via DPI interface from the CPU_A and
CPU_B scoreboard which communicates with CPU_A and CPU_B agent
via analysis ports.

–– SystemVerilog assertions to check low-level granularity of cache pipes,
FIFOs, register files, L1 ⇔ L2 interface protocol, L2 ⇔ AXI interface pro-
tocol, etc.

	2.	 CPU_B ⇔ L1 Cache ⇔ L2 Cache:

•	 Stimulus and response strategy same as that for CPU_A, but all traffic will
now be driven from CPU_B. CPU_A will remain idle.

	3.	 CPU_A && CPU_B Concurrent ⇔ L1 Cache ⇔ L2 Cache:

•	 Stimulus:

–– All singular transactions from CPU_A and CPU_B are reused only that
both CPUs will now fire constrained randomly as in the real world.

–– In addition to constrained random, apply direct testing to see that:

Both processors simultaneously access L2 cache lines at all possible gran-
ularities of byte, word, long word, and entire line.

The CPUs perform false sharing (same line but with different byte address-
ing) and true sharing (same line and same byte address).

Tests to see how write before read gets reordered, etc. for corner case
testing.

–– Ping pong-style snoops from each processor. This means that each proces-
sor continually snoops a line in the other processor.

–– Cache block flush to flush entire L1 and L2 to main memory from both
processors.

•	 Response:

–– Final memory image produced by the memory subsystem reference model.
This reference model gets all writes/reads from UVM agent monitor of
both processors and determines the final memory image.

–– The final memory image produced by CPU_A and CPU_B cache block
flushes should match the one produced by the reference model.

–– SystemVerilog assertions to check low-level granularity of:

Cache pipes
FIFOs, register files
L1 ⇔ L2 interface protocol
L2 ⇔ AXI interface protocol
MESI protocol state machine transitions

17  Cache Memory Subsystem Verification: UVM Agent Based

315

	4.	 CPU_A, CPU_B ⇔ L1 ⇔ L2 ⇔ AXIM/AXIS

•	 Stimulus:

–– Reuse all the tests created for CPU_A and CPU_B simultaneous opera-
tions for this subsystem.

–– Add stimulus from AXIM UVM agent connected to L2 cache. This stimu-
lus must include both cache coherent transactions as well as non-cache
coherent transactions.

•	 Response:

–– Final memory image produced by the memory subsystem reference model.
This reference model gets all writes/reads from UVM agent monitor of
both processors as well as the AXI UVM agent monitor. The reference
model determines the final memory image.

–– The final memory image produced by CPU_A and CPU_B cache block
flushes, and UVM AXI agent transactions should match the one produced
by the reference model.

–– SystemVerilog assertions to check low-level granularity of cache pipes,
FIFOs, REGISTER files, L1 ⇔ L2 interface protocol, L2 ⇔ AXI interface
protocol, etc.

17.4  �Cache Subsystem Interconnect Verification

This topic is entirely covered in Chap. 14 and directly applicable here.
The interconnects in this system can be coherent or non-coherent. Both cases are

covered in Chap. 14.

17.5  �Low-Power Verification

This topic is covered in its entirety in Chap. 9. This methodology is directly appli-
cable to the system under discussion here.

For the cache memory subsystem verification, the methodology with UPF is
directly applicable based on the following power domains and the State Table
defined below.

•	 Power subdomains for the system in Fig. 17.1:

–– CPU_A and CPU_B including L1 cache
–– L2 cache
–– AXI subsystem

17.5  Low-Power Verification

http://dx.doi.org/10.1007/978-3-319-59418-7_18
http://dx.doi.org/10.1007/978-3-319-59418-7_14
http://dx.doi.org/10.1007/978-3-319-59418-7_9

316

•	 Power State Table for the system (Fig. 17.2):

State \ Power
Domain

AXI Master/SlaveL2 CacheCPU_A,
CPU_B, L1

Normal

Sleep

ON_10 ON_10 ON_08

OFF

OFF

OFF

OFF

ON_10

ON_10Hibernate

17.6  �Static Formal or Static + Simulation Hybrid

This topic and methodology are described in its entirety in Chap. 10.
The following logic blocks (and sub blocks thereof) are identified for static and/

or static + simulation hybrid methodology:

•	 L1 cache MESI protocol state machine.
•	 L2 cache MESI protocol state machine.
•	 L1 TAG memory.
•	 L2 TAG memory.
•	 AXI master state machine.
•	 AXI slave state machine.
•	 AXI ⇔ L2 interface protocol.
•	 L1 cache ⇔ L2 cache interface protocol.
•	 Note that the CPU is not a candidate for static formal because it is considered a

pre-verified IP.

17.7  �Assertions Methodology (SVA)

The methodology and technical detail thereof are described in Chap. 6 in its entirety.
Assertions for our system (Fig. 17.1, cache subsystem verification) need to be

deployed for the same candidates that need static formal. Static formal needs asser-
tions, which is why they are candidates for assertions as well. They are listed here
for the sake of completeness:

•	 L1 cache MESI protocol state machine
•	 L2 cache MESI protocol state machine
•	 L1 TAG memory
•	 L2 TAG memory

17  Cache Memory Subsystem Verification: UVM Agent Based

http://dx.doi.org/10.1007/978-3-319-59418-7_10
http://dx.doi.org/10.1007/978-3-319-59418-7_6

317

•	 AXI master state machine
•	 AXI slave state machine
•	 AXI ⇔ L2 interface protocol
•	 L1 cache ⇔ L2 cache interface protocol

In addition,

•	 Explicit assertions for synchronous and asynchronous FIFOs of the system
•	 All inter-block protocols (control logic)

17.8  �Coverage Methodology (Functional: SFC, Code,
and SVA “cover”)

This topic is covered in its entirety in Chap. 7.
Before we apply functional cover points to the cache memory subsystem:

•	 Determine logic that needs to be functionally covered.
•	 How will you leverage code coverage with SystemVerilog functional coverage?
•	 What’s the strategy to constrain stimulus to achieve desired functional

coverage?
•	 How will you determine that you have specified all required cover points and

cover groups? This is the hardest (and sometime subjective) question to answer.
Continue to strategize as the project progresses.

The functional cover points need to be applied to the following blocks:

•	 L1 write through cache states and state transitions
•	 L2 write back MESI protocol states and all MESI protocol state transitions
•	 L1 and L2 Tag comparison logic
•	 All possible transactions and transitions of these transactions on L1–L2

interconnect
•	 All possible transactions and transitions of these transactions on L2–AXI

interconnect
•	 L1 and L2 status registers
•	 Byte, word, and long word access status on L1 and L2 cache

17.9  �Software/Hardware Co-verification

The cache memory subsystem is primarily for cache coherency testing. Software
testing is not necessary. UVM agents for CPU_A, CPU_B, and AXI will verify L1/
L2 cache using directed, constrained random and random transactions. Hence, soft-
ware/hardware co-verification is not necessary.

17.9  Software/Hardware Co-verification

http://dx.doi.org/10.1007/978-3-319-59418-7_7

318

17.10  �Simulation Regressions: Hardware Acceleration
or Emulation or FPGA Prototyping

In this subsystem, cache coherency verification, we don’t need full CPU processor
models. Only the UVM agents for processors are needed. Hence, no need for a
hardware accelerator or emulation.

17.11  �ESL: Virtual Platform for Software
and Test Development

A virtual platform for the cache subsystem is not necessary. What is necessary is to
develop a TLM2.0 memory subsystem reference model. This model will interact
with UVM agent monitor analysis ports. It will predict the final memory image with
which the RTL-produced memory image will be compared.

17  Cache Memory Subsystem Verification: UVM Agent Based

319© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7_18

Chapter 18
Cache Memory Subsystem Verification:
ISS Based

Chapter Introduction
This chapter discusses, in detail, the verification of a cache subsystem of a larger
SoC. We will go through a comprehensive verification plan and describe at each
verification step, cache subsystem-based real-life detail. This chapter discusses the
verification methodology using an instruction set simulator (ISS) (as opposed to an
UVM agent which is described in Chap. 17).

The CPU and memory subsystem platform shown in Fig. 18.1 use the cache
memory subsystem of Fig. 17.1. The entire cache memory subsystem is plugged
into the CPU and memory subsystem. The idea is that we can verify the cache
memory subsystem of Fig. 17.1 using either the CPU_A and CPU_B UVM agents
as we saw in the previous chapter or the complete CPU ISS (instruction set simula-
tor) models for these two processors.

Figure 18.1 subsystem shows the use of ISS as the full processor model for
CPU_A and CPU_B. These ISS models can execute instructions from a real C/C++
program to allow for real-world applications to run on the cache subsystem. You
don’t need to “manually” generate transaction traffic as you would have to, in the
case of UVM agents for CPUs. In addition, this ISS also includes the write back L2
reference model. The L2 reference model does not have to be fed with write/read
transactions from the UVM agents, rather they interact directly with the ISS model
and maintain the L2 reference model’s memory image.

As shown in Fig. 18.1, a random instruction test generator first creates a test
memory image which is loaded in the external DDR of the cache subsystem and
into the ISS internal memory. Instruction execution by ISS starts after reset which
creates a transaction stream of writes and reads on the L1 and L2 interconnect. The
program execution continues until the end and won’t stop (except when an SVA
assertion fires and stops simulation) until the end of the program. At the end of the
program execution, the ISS will create an expected memory image (not of the L2
cache but of the external DDR). The RTL will also have the final state of memory in
the DDR (after executing the final full cache block flush instructions). The expected
DDR image is compared with the simulated DDR image and failures noted thereof.

http://dx.doi.org/10.1007/978-3-319-59418-7_17
http://dx.doi.org/10.1007/978-3-319-59418-7_17
http://dx.doi.org/10.1007/978-3-319-59418-7_17

320

Note that if you do find a discrepancy between the simulated and expected mem-
ory images, it will be very hard to recreate the failing scenario. This is because the
final memory image does not translate directly into the activity that took place
between L1 and L2. There are two ways to encounter this. One is to create an L2
memory image at the end of the program execution and compare it with simulated
L2 image. The other is to heavily use SystemVerilog assertions for all corner cases
(as described in Sect. 17.7) and see that the simulation stops as soon as an assertion
is violated. That’s the easiest way to know where exactly the bug arises from.

There are distinct advantages and disadvantages of using either the UVM agent
approach or the ISS full processor model approach.

Advantages of verification using UVM agents for CPU_A and CPU_B:

•	 No need to generate CPU instructions. No need for an instruction generator.
•	 CPU transactions can be easily targeted to stress verify L1/L2 cache coherency.
•	 Easy to create directed, constrained random and full random transactions on L1/

L2 interconnect.
•	 Easy to target corner cases.
•	 Easy to target cases that miss functional coverage.

Disadvantages of verification using UVM agents:

•	 Need to manually create transactions to mimic transactions created by real-life
applications. In other words, create transactions to mimic instruction source, des-
tination dependencies, cache block flushes, cache block invalidations, etc.

•	 Need to manually collide transactions from the two processors to create corner
cases and stress verification.

Fig. 18.1  Cache memory subsystem verification using ISS CPU models

18  Cache Memory Subsystem Verification: ISS Based

http://dx.doi.org/10.1007/978-3-319-59418-7_17

321

Advantages of using ISS for CPU_A and CPU_B processors:

•	 Real-life scenarios for cache collision and cache coherency verification.
•	 Random instruction generator can be tuned to create exhaustive corner cases.
•	 Easy to create the test memory image for program execution. Easy to create final

memory image of the subsystem (as expected memory image) for comparison
with the simulated memory image.

•	 Run real-life applications for a final sanity check/verification of the subsystem.

Disadvantages of using ISS-based verification:

•	 Hard to direct traffic on L1 and L2 interconnect from an instruction stream.
•	 Hard to target cache coherency corner cases since no direct way to target a memory

location from both processors at the same time. So, stress verification is difficult.

So, which of the two approaches would you want to use? The short answer is
both. Here’s how.

	1.	 Start with the UVM agent approach. This approach should be used to weed out
90%+ bugs of the memory subsystem because the UVM agents provide the best
way to direct your tests for corner cases as well as standard testing. It is very hard
to write an assembly program to execute on the full ISS processor model and direct
the traffic the way you want. UVM agent allows you to target a specific scenario
deterministically. The ISS will have a tough time targeting such a scenario.

	2.	 When you are done with the UVM agent-based verification, switch over to the
ISS-based CPU models. This approach is simply to see that we haven’t missed
any cases that would appear in real-life applications. If you did your job well
with the UVM agents, the chances of major surprises with ISS models should be
less. But the confidence you get by running small snippets of real code is not
achievable by the UVM agent approach.

18  Cache Memory Subsystem Verification: ISS Based

323© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7

Bibliography

Accelera. (2015). UVM 1.2 User’s guide. Accelera.
Accelera. (n.d.-a). Universal Verification Methodology (UVM) 1.2 User’s guide.
Accelera. (n.d.-b). Verilog-AMS LRM Rev. 2.4. Accelera.
Agarwal, R., et al. (n.d.). An insight into layout versus schematic. EDN Network.
ASIC-WORLD. (n.d.). Retrieved from asic-world.com: http://www.asic-world.com/systemver-

ilog/random_constraint1.html
Bailey, B., & Martin, G. (n.d.). ESL models and their application. 2010, Springer
Bembaron, F., et al. (n.d.). Low power verification methodology using UPF , TI, DVC on 2009.
Bhattacharya, D. O. (2012a). PSL/SVA assertions in SPICE. DVCON.
Bhattacharya, P. (2012b). Retrieved from EETimes: http://www.eetimes.com/document.

asp?doc_id=1279150
Cadence. (n.d.). Encounter conformal low power. Retrieved from www.cadence.com
Cadence-VIP. (n.d.). Cadence VIP: Interconnect Validator.
Cummings, C. E. (2000). Simulation and synthesis techniques for asynchronous FIFO design.

SNUG 2000.
Cummings, C. E. (n.d.). Clock domain crossing (CDC) design & verification techniques using

SystemVerilog. Paper presented at SNUG 2000.
Donohue, R. (n.d.). Synchronization in digital logic circuits. Paper presented at SNUG 2000.
Erich Marschner, P. Y. (n.d.). Static verification for complex design. Paper presented at SNUG 2000.
IEEE Standard for Design and Verification of Low Power Integrated Circuits,. I.-2. (n.d.). IEEE

standard for design and verification of low power integrated circuits, IEEE Std 1801–2009,
2009.

John Brennan, T. Z. (n.d.). The how to’s of AMS verification. DVCON. Accelera.
Jones, A., & Sonander, J., S. T. (n.d.). An introduction to property checkers for functional verifica-

tion. Paper presented at SNUG 2000.
Kaiser, S. (n.d.). ESL solutions for low power design. IEEE.
Litterick, M. (2006). Pragmatic simulation-based verification of clock domain crossing signals

and jitter using SystemVerilog assertions. Retrieved from www.verilab.com/files/sva_cdc_
paper_dvcon2006.pdf

Mathur, A., et al. (n.d.). Functional equivalence verification tools in high-level synthesis flow.
Paper presented at SNUG 2000.

Mehta, A. (2016). SystemVerilog assertions and functional coverage. A comprehensive guide to
methodologies and applications. Los Gatos: Springer.

MentorGraphics. (n.d.). Verification Academy. https://verificationacademy.com/
Modh, H. (n.d.). http://hardikmodh.blogspot.com/

http://www.asic-world.com/systemverilog/random_constraint1.html
http://www.asic-world.com/systemverilog/random_constraint1.html
http://www.eetimes.com/document.asp?doc_id=1279150
http://www.eetimes.com/document.asp?doc_id=1279150
http://www.cadence.com/
http://www.verilab.com/files/sva_cdc_paper_dvcon2006.pdf
http://www.verilab.com/files/sva_cdc_paper_dvcon2006.pdf
https://verificationacademy.com/
http://hardikmodh.blogspot.com/

324

Nick Heaton, A. B. (n.d.). Functional and performance verification of SoC interconnects.
Embedded Computing Design.

O’Riordan, P. B. (2012). Mixed signal verification methodology. In J. Chen et al. (Eds.), Mixed-
signal methodology guide. San Jose: Cadence Design Systems.

OVP. (n.d.). Open virtual platform. Retrieved from http://www.ovpworld.org
Peruzzi, R. (n.d.). https://www.design-reuse.com/articles/23018/verification-virtual-prototyping-

ams-behavioral-model.html. Retrieved from https://www.design-reuse.com
Report, S. T. (2008, September). Low power design, special technology report. SCDsource.
Rizzati, L. (n.d.). 11 myths about hardware emulation.
Ron Vogelsong, A. H. (2015). Practical RNM with SystemVerilog. CDNLive.
Synopsys. (n.d.). Logic equivalence using formality. Retrieved from YouTube: https://www.you-

tube.com/watch?v=LfqNlRfpVWo
SystemVerilog_LRM_1800-2012. (n.d.). SystemVerilog LRM 1800-2012.
TLM2.0, O. (n.d.). OSCI TLM-2.0 language reference manual.
Turpin, M. (n.d.). The dangers of living with an X. ARM (2003).
Wen, H., & Chen, J., S. a. (n.d.). Tackling verification challenges with interconnect. Cadence White

Paper.
Wikipedia. (n.d.-a). Wikipedia.
Wikipedia. (n.d.-b). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Newton's_method
Yeung, P. (n.d.). Five steps to quality CDC verification. Mentor Graphics White Paper.

Bibliography

http://www.ovpworld.org
https://www.design-reuse.com/articles/23018/verification-virtual-prototyping-ams-behavioral-model.html
https://www.design-reuse.com/articles/23018/verification-virtual-prototyping-ams-behavioral-model.html
https://www.design-reuse.com
https://www.youtube.com/watch?v=LfqNlRfpVWo
https://www.youtube.com/watch?v=LfqNlRfpVWo
https://en.wikipedia.org/wiki/Newton's_method

325© Springer International Publishing AG 2018
A.B. Mehta, ASIC/SoC Functional Design Verification,
DOI 10.1007/978-3-319-59418-7

A
Accellera, 80
Algorithm ⇔ ESL – TLM 2.0, 241
Algorithm ⇔ ESL – TLM 2.0 ⇔ RTL,

243–245
Analog/mixed signal (AMS), 259–275

assertion (SVA) based methodology,
273–274

verification challenges and solutions,
260–268

Analysis ports and exports, 34–35
‘And’ operator, 109
Approximately timed (AT), 231–233
ASIC respin causes, 4
Assertion-based verification (ABV), 8
Assertions

and coverage driven methodology, 135
improve observability, 77
methodology, 309
sampling edge, 93
types, 82–84

Asynchronous FIFO, 158
AT modeling style, with non-blocking

transport calls, 232

B
“Bind”, 93
Binding properties, 95

assertions, 94
“Bins”, 138–140

“Bins”: Basics, 139
Boot Linux, 234
Bridge ESL and RTL verification

worlds, 239

C
Cadence® Interconnect Solution, 284–286
Chip functionality assertions, 83
Chip interface assertions, 83
Clock delay – ##m, 95–98
Clock delay range, 98–99

##[m:n], 98
Clock domain crossing (CDC), 151–169

checks using SVA, 161–163
tools support, 168–169
verification at gate level, 167–168
verification methodology, 164–167

Clock edge, 92
Clocking basics–assertions, 91
Code coverage, 66, 131–132
Concurrent assertions, 89–90, 93–95

application, 115, 118
operators, 95–112

Configure phase, 38
Connectivity verification, 223
Consecutive repetition operator, 99–100

[*m], 99
Consecutive repetition range, 100–102

[*m:n], 100
Constrained random verification (CRV), 65–73

methodology, 66–67
“Cover”, 132
Coverage

and assertions driven design
verification methodology, 136

driven constrained random
verification methodology, 68

driven design verification
methodology, 134

follow the bugs, 136

Index

326

Covergroup basics, 137
Covergroup in a class, 140
Coverpoint, 135, 137, 138
Cross coverage, 141

D
Design verification (DV), 2, 201
Difference between SystemVerilog

and SVA, 77
Dynamic low power verification, 173
Dynamic voltage and frequency scaling

(DVFS), 227

E
Electronic system level (ESL), 174, 194,

225–245, 310, 311
to RTL equivalence, 213
to RTL refine and reuse methodology,

239–241
Emulation, 248–252, 300–301, 310, 311

and prototyping, 248
“End event”, 105
Evolution of UVM, 18

F
Formal based technologies, 197–223, 318
Functional coverage, 131, 133–136,

144, 309, 319
application, 147, 149–150
control-oriented, 132
data-oriented, 132
methodology, 133
performance, 144–146
performance implication, 146–147

Functional verification, challenges and
solutions, 5–12

G
Gate level CDC, 167
Glitch, 88
Gray Code solution, 157

H
Hardware

bring up and debug, 293–294
emulation, 248
emulation and prototyping, 248

Hardware/software co-verification, 247–257
How good is your testbench, 8

I
IEEE 1801-2009, 195
Immediate assertion, 87–88
Inheritance and constraint layering, 42
Instruction set simulator (ISS), 321
Interconnect coverage measurement, 283–284
Interconnect response checker, 282–283
Interconnect stimulus generation, 281–282
Interconnect verification, 277–286
‘Intersect’ operator, 111

L
Layout vs. schematic (LVS), 214–217

design methodology flow, 216
Layout, fabrication and assembly, 292
Level shifting strategies, 192–193
Local variables, 112–114, 122
Logic Equivalency Check (LEC), 199, 206–219
Loosely timed (LT), 230–231
Low power concepts, 178–179
Low power structural checks, 220–222
Low power verification, 1, 10, 171–195, 220, 308

using UPF/CPF, 171–172
LT model with blocking transport call, 231

M
Mentor Veloce, 256–257
Metastability, 152–153
Model checking, 200–205
Module interface assertions, 83
Multi-bit synchronization, 157–158
Multiple uses, SVA, 80
Multi-threading, concurrent assertions, 122

N
“Nettype”, 264, 271–273
Network SoC verification, 303–311
Non-consecutive GoTo repetition, 105–106

[->m], 105
Non-consecutive repetition operator [=m], 103
Non-overlapping implication operator – |=>,

163

O
Open virtual platform (OVP), 234–235
Operators, concurrent assertions, 97
“Or” operator, 111
Overlapping, 90, 91

and non-overlapping operators, 91
Open Verification Library (OVL), 80

Index

327

P
Palladium XP Unified Xccelerator

Emulator (UXE), 256
PCI read, 80–82
Performance implication assertions, 84
Phil Moorby, 15
Polymorphism, 19–20
Power aware connect modules, 265–268
Power estimation, at architecture level, 193–195
Power integrity (PI), 291
Power requirements vs. power trend, 172
“Preponed region”, 92
Printed circuit board (PCB) design, 289–294
Product design and development flow, 288–289

Q
“Qualifying event”, 103

R
Random variables, 70–71
Real number modeling (RNM), 268–273
Re-convergent fanout and CDC, 165
Reduce time

to cover, 8
to debug, 8
to develop, 6–7
to simulate, 7

Reference model, 238–239
Register transfer level (RTL) assertions, 82
Repetition non-consecutive, 102–103

[=m], 102
Repetition non-consecutive range, 103–105

[=m:n], 103
Reusable UVM example, 62
Reuse: algorithm - ESL-TLM2.0–RTL, 244

S
Sampled value, 92
Sampled variable, 92
Sampling edge, 90, 92
Schematic design, 290–291
Scoreboard, 62
seq1 and seq2, 110
Sequencer and driver interaction, 44–46
Sequential equivalence checking (SEC), 210–214
Signal integrity, 291
Simulation regressions, 11, 320
Simulation time tick, 93
Speed bridge, 252–253
Standard Co-Emulation Modeling Interface

(SCE-MI), 253

State space of static formal verification, 201
Static formal, 164, 203, 308
Static formal methods, 198
Static formal or static + simulation hybrid

methodology, 10, 308
Static formal + simulation hybrid verification

methodology, 199, 205–206
Static formal verification, 199–205
Static verification, 197–223, 318

umbrella, 199
Stimulus traffic generation requirements, 9
“Structural” coverage, 8, 133
Subsystem stimulus and response

methodology, 9
SVA application, 114–128

consecutive delay range operator, 116–117
infinite delay range operator, 114
machine check exception, 128
multi-threaded operation, 121–127
‘req’ followed by ‘ack, 128
a request ⇔ Grant bus protocol, 127
state transition check of a state machine,

118–121
Synchronizer, 153–154
Synchronizing fast clock (transmit) into slow

clock (receive), 155–157
Synopsys HECTOR, 215
Synopsys Zebu, 257
Syntax

##[*], 114
##[+], 114
##[0:$], 114

Synthesizable SVA, 250
System on Chip (SoC), 151

interconnect, 307
interconnect verification, 277–286

SystemVerilog ‘Bins’: Basics, 138–140
SystemC, 194, 226, 228
SystemVerilog Assertions (SVA), 8, 75–128,

166, 203
SystemVerilog “assume”, 204
SystemVerilog evolution, 15
SystemVerilog Functional Coverage (SFC),

131–150
applications, 147–150

SystemVerilog language paradigm, 14

T
Thermal integrity (TI), 291
Three flop synchronizer (high speed designs),

154–155
Throughout, 106–108
Timing closure, 296

Index

328

Transaction-level methodology (TLM), 17, 194
TLM FIFO, 33
TLM2.0, 225, 226, 228–233, 240
TLM2.0 virtual platform, 237

Transition coverage, 144

U
Universal Verification Methodology

(UVM), 17–63
Unified Power Format (UPF), 174–176, 183

design/Logic Hierarchy navigation, 179
evolution, 176
level shifter strategy, 193
methodology, 176–179
power domain creation, 181
power state table, 188
power switch creation, 185
state isolation strategy, 191
state retention strategy, 189
supply network, 183
supply network reuse, 184
supply port states, 186

Universal Verification Methodology
(UVM), 17–63

agent, 24–25
class library, 17, 29–30
driver, 27–28, 42–44
environment, 23–24, 48
hierarchy, 20–29

monitor, 28
one, 40–51
phases, 35–40
scoreboard, 29, 238–239
sequence item, 25–27
sequencer, 27, 46
test, 23
transaction level communication, 30–35
transaction level testbench, 22–23
two, 51–62

V
Verification plan, 9–12
Virtual platform, 194, 227–228,

233–236, 311
for design verification, 236–245

Virtual platform ⇔ hardware emulation,
253–255

Voice over IP (VoIP), 303–311

W
“Within”, 108
“Wreal”, 264, 269–271

X
Xilinx VCU108 development board, 288
X-state verification, 222

Index

	Dedication
	Preface
	Acknowledgments
	Contents
	List of Figures
	About the Author
	Chapter 1: Introduction
	1.1 Functional Design Verification: Current State of Affair
	1.2 Where Are the Bugs?

	Chapter 2: Functional Verification: Challenges and Solutions
	2.1 Verification Challenges and Solutions
	2.1.1 Reduce Time to Develop
	2.1.2 Reduce Time to Simulate
	2.1.3 Reduce Time to Debug
	2.1.4 Reduce Time to Cover: Check How Good Is Your Testbench

	2.2 A Comprehensive Verification Plan

	Chapter 3: SystemVerilog Paradigm
	3.1 SystemVerilog Language Umbrella
	3.2 SystemVerilog Language Evolution

	Chapter 4: UVM (Universal Verification Methodology)
	4.1 What Is UVM?
	4.2 Polymorphism
	4.3 UVM Hierarchy
	4.3.1 UVM Testbench
	4.3.1.1 UVM Transaction-Level Testbench

	4.3.2 UVM Test
	4.3.3 UVM Environment
	4.3.4 UVM Agent
	4.3.5 UVM Sequence Item
	4.3.6 UVM Sequence
	4.3.7 UVM Sequencer
	4.3.8 UVM Driver
	4.3.8.1 uvm_driver Methods

	4.3.9 UVM Monitor
	4.3.10 UVM Scoreboard

	4.4 UVM Class Library
	4.5 UVM Transaction-Level Communication Protocol: Basics
	4.5.1 Basic Transaction-Level Communication
	4.5.2 Hierarchical Connections
	4.5.3 Analysis Ports and Exports

	4.6 UVM Phases
	4.6.1 Build Phases
	4.6.1.1 Build
	4.6.1.2 Connect
	4.6.1.3 end_of_elaboration

	4.6.2 Run-Time Phases
	4.6.2.1 start_of_simulation
	4.6.2.2 Run
	4.6.2.3 pre_reset
	4.6.2.4 Reset
	4.6.2.5 post_reset
	4.6.2.6 pre_configure
	4.6.2.7 Configure
	4.6.2.8 post_configure
	4.6.2.9 pre_main
	4.6.2.10 Main
	4.6.2.11 post_main
	4.6.2.12 pre_shutdown
	4.6.2.13 Shutdown
	4.6.2.14 post_shutdown

	4.6.3 Cleanup Phases
	4.6.3.1 Extract
	4.6.3.2 Check
	4.6.3.3 Report
	4.6.3.4 Final

	4.7 UVM Example: One
	4.7.1 Modeling a Sequence Item
	4.7.1.1 Inheritance and Constraint Layering

	4.7.2 Building UVM Driver
	4.7.2.1 Driver Basics
	4.7.2.2 Driver Example

	4.7.3 Basic Sequencer and Driver Interaction
	4.7.4 Building UVM Sequencer
	4.7.5 Building UVM Monitor
	4.7.6 UVM Agent: Connecting Driver, Sequencer, and Monitor
	4.7.7 Building the Environment
	4.7.8 UVM Top-Level Module (Testbench) Example

	4.8 UVM Example: Two
	4.8.1 DUT: lpi.sv
	4.8.2 lpi_if.sv
	4.8.3 lpi_seq_item.sv
	4.8.4 lpi_sequencer.sv
	4.8.5 lpi_driver.sv
	4.8.6 lpi_monitor.sv
	4.8.7 lpi_agent.sv
	4.8.8 lpi_basic_sequence.sv
	4.8.9 lpi_basic_test.sv
	4.8.10 lpi_env.sv
	4.8.11 lpi_top_v_sequencer.sv
	4.8.12 lpi top environment.sv
	4.8.13 lpi_testbench.sv

	4.9 UVM Is Reusable

	Chapter 5: Constrained Random Verification (CRV)
	5.1 Productivity Gain with CRV
	5.2 CRV Methodology
	5.3 Basics of CRV
	5.3.1 Random Variables: Basics
	5.3.2 Random Number System Functions and Methods
	5.3.3 Random Weighted Case: Randcase

	Chapter 6: SystemVerilog Assertions (SVA)
	6.1 Evolution of SystemVerilog Assertions
	6.2 SystemVerilog Assertion Advantages
	6.2.1 Assertions Shorten Time to Develop
	6.2.2 Assertions Improve Observability
	6.2.3 Assertions Shorten Time to Cover
	6.2.4 One-Time Effort: Many Benefits

	6.3 Creating an Assertion Test Plan: PCI Read Example
	6.3.1 PCI: Read Protocol Assertion Test Plan (Verification Team)
	6.3.2 PCI: Read Protocol Assertions Test Plan (Design Team)

	6.4 SVA Assertion Methodology Components
	6.4.1 What Type of Assertions Should I Add?
	6.4.2 Protocol for Adding Assertions
	6.4.3 How Do I know I Have Enough Assertions?
	6.4.4 Use Assertions for Specification and Review

	6.5 Immediate Assertions
	6.6 Concurrent Assertions
	6.6.1 Overlapping and Nonoverlapping Operators

	6.7 Clocking Basics
	6.7.1 Sampling Edge (Clock Edge)

	6.8 Concurrent Assertions: Binding Properties
	6.8.1 Binding Properties (Scope Visibility)

	6.9 Operators
	6.9.1 ##m: Clock Delay
	6.9.2 ##[m:n]: Clock Delay Range
	6.9.3 [*m]: Consecutive Repetition Operator
	6.9.4 [*m:n]: Consecutive Repetition Range
	6.9.5 [=m]: Repetition Non-consecutive
	6.9.6 [=m:n]: Repetition Non-consecutive Range
	6.9.7 [->m] Non-consecutive GoTo Repetition Operator
	6.9.8 sig1 throughout seq1
	6.9.9 seq1 within seq2
	6.9.10 seq1 and seq2
	6.9.11 seq1 or seq2
	6.9.12 seq1 intersect seq2

	6.10 Local Variables
	6.11 SystemVerilog Assertions: Applications
	6.11.1 SVA Application: Infinite Delay Range Operator
	6.11.2 SVA Application: Consecutive Delay Range Operator
	6.11.3 SVA Application: Consecutive Delay Range Operator
	6.11.4 SVA Application: Antecedent as Property Check. Consequent as Hard Failure
	6.11.5 SVA Application: State Transition Check of a State Machine
	6.11.6 SVA Application: Multi-threaded Operation
	6.11.7 SVA Application: A Request ⇔ Grant Bus Protocol
	6.11.8 SVA Application: Machine Check Exception
	6.11.9 SVA Application: “req” followed by “ack”

	Chapter 7: SystemVerilog Functional Coverage (SFC)
	7.1 Difference Between Code Coverage and Functional Coverage
	7.2 SystemVerilog Components for Complete Coverage
	7.3 Assertion (ABV) and Functional Coverage (SFC)-Based Methodology
	7.3.1 Follow the Bugs!

	7.4 SystemVerilog “Covergroup” Basics
	7.5 SystemVerilog “Coverpoint” Basics
	7.6 SystemVerilog “Bins”: Basics…
	7.7 “Covergroup” in a “Class”
	7.8 “Cross” Coverage
	7.9 “Bins” for Transition Coverage
	7.10 Performance Implications of Coverage Methodology
	7.10.1 Know What You Should Cover
	7.10.2 Know When You Should Cover

	7.11 When to “Cover” (Performance Implication)
	7.12 SystemVerilog Functional Coverage: Applications
	7.12.1 PCI Cycles
	7.12.2 Frame Length Coverage

	Chapter 8: Clock Domain Crossing (CDC) Verification
	8.1 Design Complexity and CDC
	8.2 Metastability
	8.3 Synchronizer
	8.3.1 Two-Flop Synchronizer (Identical Transmit and Receive Clock Frequencies)
	8.3.2 Three-Flop Synchronizer (High-Speed Designs)
	8.3.3 Synchronizing Fast-Clock (Transmit) into Slow-Clock (Receive) Domains
	8.3.4 Multi-bit Synchronization
	8.3.5 Design of an Asynchronous FIFO Using Gray Code Counters

	8.4 CDC Checks Using SystemVerilog Assertions
	8.5 CDC Verification Methodology
	8.5.1 Automated CDC Verification
	8.5.2 Step 1: Structural Verification
	8.5.3 Step 2: Protocol Verification
	8.5.4 Step 3: Debug

	8.6 CDC Verification at Gate Level
	8.7 EDA Vendors and CDC Tools Support
	8.7.1 Mentor

	Chapter 9: Low-Power Verification
	9.1 Power Requirements: Current Industry Trend
	9.2 Dynamic Low-Power Verification Challenges
	9.3 UPF (Unified Power Format)
	9.3.1 UPF Evolution

	9.4 UPF Methodology
	9.4.1 Low-Power Design Terminology/Definitions

	9.5 UPF: Detailed SoC Example
	9.5.1 Design/Logic Hierarchy Navigation
	9.5.2 Power Domain Creation
	9.5.3 Supply Power to the Power Domains: Supply Network
	9.5.3.1 create_supply_port
	9.5.3.2 create_supply_net
	9.5.3.3 connect_supply_net
	9.5.3.4 set_domain_supply_net
	9.5.3.5 create_supply_net -reuse

	9.5.4 Power Switch Creation
	9.5.4.1 create_power_switch

	9.5.5 Supply Port States
	9.5.5.1 add_port_state

	9.5.6 Power State Table
	9.5.6.1 create_pst
	9.5.6.2 add_pst_state

	9.5.7 State Retention Strategies
	9.5.7.1 set_retention
	9.5.7.2 set_retention_control

	9.5.8 Isolation Strategies
	9.5.8.1 set_isolation
	9.5.8.2 set_isolation_control

	9.5.9 Level Shifting Strategies

	9.6 Power Estimation at Architecture Level
	9.7 UPF Features Subset (IEEE 1801–2009)

	Chapter 10: Static Verification (Formal-Based Technologies)
	10.1 What Is Static Verification?
	10.2 Static Verification Umbrella
	10.3 Static Formal Verification (Aka Model Checking Aka Static Functional Verification)
	10.3.1 Critical Logic Blocks for Static Formal
	10.3.1.1 Control Logic
	10.3.1.2 Inter-module Interfaces
	10.3.1.3 Finite-State Machines
	10.3.1.4 Data Integrity

	10.3.2 SystemVerilog Assertions and Assumptions for Static Formal and Simulation
	10.3.3 SystemVerilog “Assume” and Static Formal Verification
	10.3.4 Static Formal vs. Simulation

	10.4 Static Formal + Simulation Hybrid Verification Methodology
	10.5 Logic Equivalence Check (LEC)
	10.5.1 LEC Technology
	10.5.1.1 Read
	Logic Cones
	Black Boxes

	10.5.1.2 Match and Verify
	Compare Points

	10.5.1.3 Debug

	10.5.2 RTL to RTL Verification
	10.5.3 RTL to Gate Verification
	10.5.4 Gate to Gate Verification
	10.5.5 ESL (C/ C++/ SystemC model) to RTL (Sequential Equivalence Checking—SEC)
	10.5.6 Layout vs. Schematic (LVS) Physical Verification
	10.5.7 RTL Lint

	10.6 Structural Checks
	10.7 Low Power Structural Checks
	10.8 X-State Verification
	10.9 Connectivity Verification

	Chapter 11: ESL (Electronic System Level) Verification Methodology
	11.1 ESL (Electronic System Level)
	11.1.1 How Does ESL Help with Verification?
	11.1.2 ESL Virtual Platform Use Cases

	11.2 OSCI TLM 2.0 Standard for ESL
	11.2.1 Loosely Timed (LT) TLM 2.0 Transaction-Level Modeling
	11.2.2 Approximately Timed (AT) TLM 2.0 Transaction-Level Modeling

	11.3 Virtual Platform Example
	11.3.1 Advantages of a Virtual Platform
	11.3.2 Open Virtual Platform (OVP) Initiative
	11.3.3 Rationale for Software Virtual Platforms (OVP n.d.)

	11.4 ESL/Virtual Platform for Design Verification
	11.4.1 Overview
	11.4.2 Virtual Platform and RTL Co-simulation and Verification
	11.4.3 Virtual Platform as a Reference Model in UVM Scoreboard
	11.4.4 ESL to RTL Reuse Methodology
	11.4.5 Design and Verification Reuse: Algorithm ⇔ ESL: TLM 2.0
	11.4.6 Design and Verification Reuse: ESL/TLM 2.0 ⇔ RTL
	11.4.7 Design and Verification Reuse: Algorithm ⇔ ESL-TLM 2.0 ⇔ RTL

	Chapter 12: Hardware/Software Co-verification
	12.1 Overview
	12.2 Hardware/Software Co-verification Using Virtual Platform with Hardware Emulation
	12.2.1 Hardware Emulation and Prototyping
	12.2.1.1 FPGA-Based Hardware Emulator
	12.2.1.2 Custom Emulator-On-Chip Architecture
	12.2.1.3 Custom Processor-Based Architecture

	12.2.2 Emulation System Compile Time
	12.2.3 Difference Between Emulator and FPGA-Based Prototype
	12.2.4 Myths About Emulation-Based Acceleration (Rizzati)
	12.2.4.1 Hardware Emulators Are Very Expensive to Acquire and to Maintain
	12.2.4.2 Hardware Emulation Is Used Exclusively in In-Circuit Emulation (ICE) Mode
	12.2.4.3 Hardware Emulation Is Useless in Transaction-Based Acceleration Mode
	12.2.4.4 Dynamic Power Estimation Is a Critical Verification Task, But Hardware Emulation Doesn’t Have the Capabilities to Analyze the Power Consumed by an SoC

	12.3 Speed Bridge
	12.4 Virtual Platform ⇔ Hardware Emulation Interface and Methodology
	12.4.1 Different Types of Hardware/Software Co-verification Configurations

	12.5 Hardware/Software Co-verification Using Virtual Platform with Hardware Accelerator
	12.5.1 Cadence Palladium
	12.5.2 Mentor Veloce
	12.5.3 Synopsys Zebu

	Chapter 13: Analog/Mixed Signal (AMS) Verification
	13.1 Overview
	13.2 Major AMS Verification Challenges and Solutions
	13.2.1 Disparate Methodologies
	13.2.2 Analog Model Abstractions and Simulation Performance
	13.2.2.1 Fully Behavioral, Digital Model of an Analog Block (Modeled in Verilog)
	13.2.2.2 Fully Behavioral Electrical Model of an Analog Block (Modeled in Verilog-AMS, Verilog-A, or VHDL-AMS)
	13.2.2.3 Behavioral Model Using Real Number Modeling (RNM) (Using “wreal” and “nettype”)
	13.2.2.4 Transistor: SPICE Level Modeling

	13.2.3 Low-Power Management
	13.2.3.1 Power-Aware Connect Modules

	13.3 Real Number Modeling (RNM) of Analog Blocks
	13.3.1 “wreal”
	13.3.2 “nettype”

	13.4 AMS Assertion (SVA)-Based Methodology
	13.5 AMS Simulator: What Features Should It Support?
	13.5.1 Integrated Simulation Solution for Fastest Simulation Throughput
	13.5.2 Support for Wide Spectrum of Design Languages
	13.5.3 Support for Different Levels of Model Abstraction
	13.5.4 AMS Low-Power Verification Support
	13.5.5 Support for SystemVerilog-Based UVM Methodology Including Coverage-Driven and Assertion-Based Methodologies

	Chapter 14: SoC Interconnect Verification
	14.1 Overview
	14.2 SoC Interconnect Verification: Challenges and Solutions
	14.2.1 Performance Analysis

	14.3 Interconnect Functional Correctness and Verification Completeness
	14.3.1 SoC Interconnect Stimulus Generation

	14.4 Stress Verification: Random Concurrent Tests
	14.5 SoC Interconnect Response Checker
	14.6 SoC Interconnect Coverage Measurement
	14.7 Cadence® Interconnect Solution (Cadence-VIP n.d.)
	14.7.1 Cadence ® Interconnect Validator (Basic)
	14.7.2 Cadence ® Interconnect Validator (Cache Coherent)
	14.7.3 Cadence ® Interconnect Workbench

	14.8 Synopsys Cache Coherent Subsystem Verification Solution for Arteris Ncore Interconnect (NoC)

	Chapter 15: The Complete Product Design Life Cycle
	15.1 Overview
	15.2 Product Design and Development Flow
	15.2.1 Design Specification

	15.3 PCB (Printed Circuit Board) Design
	15.3.1 Schematic Design
	15.3.2 Pre-layout Signal Integrity (SI), Power Integrity (PI), and Thermal Integrity (TI) Simulation
	15.3.3 Layout, Fabrication, and Assembly
	15.3.4 Post-layout Signal Integrity (SI), Power Integrity (PI), and Thermal Integrity (TI) Simulation
	15.3.5 Hardware Bring-Up and Debug

	15.4 ASIC/FPGA Design
	15.4.1 HDL Design
	15.4.2 Pre-synthesis Simulation
	15.4.3 Post-synthesis/Place and Route Simulation, Timing Closure
	15.4.4 Integration

	15.5 Verification
	15.5.1 Test Plan Specification
	15.5.2 Testbench and Test Program Development
	15.5.3 Functional Test
	15.5.4 Gate-Level Verification
	15.5.4.1 Unit Delay Synthesized Gate Simulation Without Standard Delay File Timing Annotation
	15.5.4.2 Post-synthesis Gate Simulation with SDF Timing Annotation

	15.5.5 Functional/Gate Regression

	15.6 Emulation

	Chapter 16: Voice Over IP (VoIP) Network SoC Verification
	16.1 Voice Over IP (VoIP) Network SoC
	16.2 VoIP Network SoC Verification Plan
	16.3 Identify Subsystems Within VoIP Network SoC
	16.4 Determine Subsystem Stimulus and Response Methodology
	16.5 SoC Interconnect Verification
	16.6 Low-Power Verification
	16.7 Static Formal or Static + Simulation Hybrid Methodology
	16.8 Assertion Methodology
	16.9 Functional Coverage
	16.10 Software/Hardware Co-verification
	16.11 Simulation Regressions: Hardware Acceleration or Emulation or FPGA Prototyping
	16.12 Virtual Platform

	Chapter 17: Cache Memory Subsystem Verification: UVM Agent Based
	17.1 Cache Subsystem
	17.2 Identify Subsystems Within the Cache Subsystem
	17.3 Determine Subsystem Stimulus and Response Methodology
	17.4 Cache Subsystem Interconnect Verification
	17.5 Low-Power Verification
	17.6 Static Formal or Static + Simulation Hybrid
	17.7 Assertions Methodology (SVA)
	17.8 Coverage Methodology (Functional: SFC, Code, and SVA “cover”)
	17.9 Software/Hardware Co-verification
	17.10 Simulation Regressions: Hardware Acceleration or Emulation or FPGA Prototyping
	17.11 ESL: Virtual Platform for Software and Test Development

	Chapter 18: Cache Memory Subsystem Verification: ISS Based
	Bibliography
	Index

